A194343 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n^2, 1<=k<=n, r=3-e.
1, 2, 2, 3, 3, 3, 3, 4, 5, 4, 5, 5, 5, 5, 5, 6, 7, 5, 7, 5, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 9, 9, 9, 9, 10, 8, 10, 11, 10, 10, 9, 10, 11, 9, 10, 10, 11, 11, 12, 10, 12, 10, 12, 10, 11, 11, 11, 12, 12, 12, 13, 12, 12, 13, 12, 11, 12, 12, 11, 14, 12, 14
Offset: 1
Examples
First eight rows: 1 2..2 3..3..3 3..4..5..4 5..5..5..5..5 6..7..5..7..5..6 7..7..7..7..7..7..7 8..8..8..8..8..8..8..8
Crossrefs
Cf. A194343.
Programs
-
Mathematica
r = 3-E; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194343 *)
Comments