This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194348 #31 Dec 15 2024 12:12:16 %S A194348 1,7,6,0,8,3,9,5,5,5,8,8,0,0,2,8,0,9,0,7,5,6,6,4,9,8,9,5,6,3,8,3,7,2, %T A194348 7,4,8,0,7,9,8,0,4,0,9,4,3,1,8,5,0,9,9,0,4,6,4,6,3,8,8,2,2,5,0,5,3,4, %U A194348 2,8,4,1,6,8,7,5,4,5,4,6,5,8,1,1,9,0,4,6,3,5,1,1,5,2,6,3,0,5,9,8,4 %N A194348 Decimal expansion of sqrt(2)^sqrt(2)^sqrt(2). %C A194348 If Schanuel's Conjecture is true, then sqrt(2)^sqrt(2)^sqrt(2) is transcendental (see Marques and Sondow 2010, p. 79). %H A194348 G. C. Greubel, <a href="/A194348/b194348.txt">Table of n, a(n) for n = 1..10000</a> %H A194348 Steven Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, Jun 23 2012, Section 1.1 %H A194348 D. Marques and Jonathan Sondow, <a href="http://arxiv.org/abs/1010.6216">Schanuel's conjecture and algebraic powers z^w and w^z with z and w transcendental</a>, arXiv:1010.6216 [math.NT], 2010-2011; East-West J. Math., 12 (2010), 75-84. %H A194348 Wikipedia, <a href="http://en.wikipedia.org/wiki/Schanuel's_conjecture">Schanuel's conjecture</a> %e A194348 1.76083955588002809075664989563837274807980409431850990464638822505342... %t A194348 RealDigits[ Sqrt[2]^Sqrt[2]^Sqrt[2], 10, 100] // First %o A194348 (PARI) sqrt(2)^sqrt(2)^sqrt(2) \\ _Charles R Greathouse IV_, May 14 2014 %o A194348 (PARI) (x->x^x^x)(sqrt(2)) \\ _Charles R Greathouse IV_, May 14 2014 %o A194348 (Magma) SetDefaultRealField(RealField(100)); Sqrt(2)^Sqrt(2)^Sqrt(2); // _G. C. Greubel_, Aug 19 2018 %Y A194348 Cf. A002193 (decimal expansion of sqrt(2)), A078333 (decimal expansion of sqrt(2)^sqrt(2)), A194555 (the decimal expansion of the real part of I^e^Pi). %K A194348 nonn,cons %O A194348 1,2 %A A194348 _Jonathan Sondow_, Aug 28 2011