This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194368 #28 Mar 24 2025 12:49:03 %S A194368 2,4,12,14,16,24,26,28,70,72,74,82,84,86,94,96,98,140,142,144,152,154, %T A194368 156,164,166,168,408,410,412,420,422,424,432,434,436,478,480,482,490, %U A194368 492,494,502,504,506,548,550,552,560,562,564,572,574,576,816,818 %N A194368 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) = 0, where r=sqrt(2) and < > denotes fractional part. %C A194368 Suppose that r and c are real numbers, 0 < c < 1, and %C A194368 ... %C A194368 s(m) = Sum_{k=1..m} (<c+k*r> - <k*r>) %C A194368 ... %C A194368 where < > denotes fractional part. The inequalities s(m) < 0, s(m) = 0, s(m) > 0 yield up to three sequences that partition the set of positive integers, as in the examples cited below. Of particular interest are choices of r and c for which s(m) >= 0 for every m >= 1. %C A194368 . %C A194368 Note that s(m) = m*c - Sum_{k=1..m} floor(c + <k*r>). This shows that if c is a rational number p/q, then the range of s(m) is a set of rational numbers having denominator q. In this case, it is easy to prove that if s(m)=0, then m is an integer multiple of q, yielding a sequence of quotients denoted by [[m/q>]] in the following list: %C A194368 . %C A194368 r..........p/q....s(m)<0....s(m)=0....[[m/q]]...s(m)>0 %C A194368 sqrt(2)....1/2....(empty)...A194368...A194369...A194370 %C A194368 sqrt(3)....1/2....A194371...A194372.............A194373 %C A194368 sqrt(5)....1/2....(empty)...A194374.............A194375 %C A194368 sqrt(6)....1/2....(empty)...A194376.............A194377 %C A194368 sqrt(7)....1/2....A194378...A194379.............A194380 %C A194368 sqrt(8)....1/2....A194381...A194382...A194383...A194384 %C A194368 sqrt(10)...1/2....(empty)...A194385.............A194386 %C A194368 sqrt(11)...1/2....A194387...A194388.............A194389 %C A194368 sqrt(12)...1/2....(empty)...A194390.............A194391 %C A194368 sqrt(13)...1/2....A194392...A194393.............A194394 %C A194368 sqrt(14)...1/2....A194395...A194396.............A194397 %C A194368 sqrt(15)...1/2....A194398...A194399.............A194400 %C A194368 tau........1/2....A194401...A194402...A194403...A194404 %C A194368 e..........1/2....A194405...A194406.............A194407 %C A194368 Pi.........1/2....A194408...A194409.............A194410 %C A194368 sqrt(2)....1/3....A194411...A194412...A194413...A194414 %C A194368 sqrt(3)....1/3....A194415...A194416...A194417...A194418 %C A194368 sqrt(5)....1/3....A194419...A194420.............A194421 %C A194368 sqrt(2)....2/3....A194422...A194423...A194424...A194425 %C A194368 tau.....<tau>/2...A194461.......................A194462 %C A194368 tau.....<tau/2>...A194463.......................A194464 %C A194368 sqrt(2)....1/r.......A194465....................A194466 %C A194368 sqrt(3)....1/r.......A194467....................A194468 %C A194368 . %C A194368 Next, suppose that r and c are chosen so that s(m)=0 for all m. Then the sets X={m : s(m)<0} and Y={m : s(m)>0} represent a pair of "generalized Beatty sequences" in this sense: if c=1/<r>, the sets X and Y represent the Beatty sequences of 1/<r> and 1<-r>. Examples: %C A194368 ... %C A194368 r..........c.........X.........Y...... %C A194368 sqrt(2)....r-1.......A003151...A003152 %C A194368 sqrt(3)....r-1.......A003511...A003512 %C A194368 tau........r-1.......A000201...A001950 %C A194368 sqrt(1/2)..r.........A001951...A001952 %C A194368 e..........e-2.......A000062...A098005 %D A194368 Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963. %H A194368 Henk Bruin and Robbert Fokkink, <a href="https://arxiv.org/abs/2503.11734">On the records and zeros of a deterministic random walk</a>, arXiv:2503.11734 [math.DS], 2025. See p. 8. %H A194368 Ronald L. Graham, Shen Lin, and Chio-Shih Lin, <a href="http://www.jstor.org/stable/2689998">Spectra of numbers</a>, Math. Mag. 51 (1978), 174-176. %t A194368 r = Sqrt[2]; c = 1/2; %t A194368 x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] %t A194368 y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] %t A194368 t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}]; %t A194368 Flatten[Position[t1, 1]] (* empty *) %t A194368 t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}]; %t A194368 Flatten[Position[t2, 1]] (* A194368 *) %t A194368 %/2 (* A194369 *) %t A194368 t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}]; %t A194368 Flatten[Position[t3, 1]] (* A194370 *) %Y A194368 Cf. A184369=(1/2)*A184368, A194285, A194469, A194470. %K A194368 nonn %O A194368 1,1 %A A194368 _Clark Kimberling_, Aug 23 2011