A194377
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) > 0, where r=sqrt(6) and < > denotes fractional part.
1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1
Keywords
Programs
-
Mathematica
r = Sqrt[6]; c = 1/2; x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 500}]; Flatten[Position[t1, 1]] (* empty *) t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 400}]; Flatten[Position[t2, 1]] (* A194376 *) t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}]; Flatten[Position[t3, 1]] (* A194377 *)
-
PARI
is(n)=my(r=sqrt(6),f=x->x-x\1);sum(k=1,n,f(1/2+k*r)-f(k*r))>0 \\ Charles R Greathouse IV, Jul 25 2012
Comments