A194397
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) > 0, where r=sqrt(14) and < > denotes fractional part.
3, 7, 11, 15, 19, 23, 27, 61, 65, 69, 73, 77, 81, 85, 89, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 111, 112, 113, 115, 116, 117, 119, 123, 127, 131, 135, 139, 143, 147, 181, 185, 189, 193, 197, 201, 205, 209, 211, 212, 213, 215
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
r:= sqrt(14): X:= 0: R:= NULL: count:= 0: for n from 1 while count < 100 do X:= X + frac(1/2+n*r) - frac(n*r); if X > 0 then count:= count+1; R:= R, n fi od: R; # Robert Israel, Nov 25 2020
-
Mathematica
r = Sqrt[14]; c = 1/2; x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}]; Flatten[Position[t1, 1]] (* A194395 *) t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 200}]; Flatten[Position[t2, 1]] (* A194396 *) t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 300}]; Flatten[Position[t3, 1]] (* A194397 *)
Comments