A194399
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) = 0, where r=sqrt(15) and < > denotes fractional part.
6, 8, 14, 16, 22, 24, 30, 32, 38, 40, 46, 48, 54, 56, 62, 70, 78, 86, 94, 102, 110, 118, 314, 322, 330, 338, 346, 354, 362, 370, 376, 378, 384, 386, 392, 394, 400, 402, 408, 410, 416, 418, 424, 426, 432, 434, 438, 442, 446, 450, 454, 458, 462, 466, 470
Offset: 1
Keywords
Programs
-
Mathematica
r = Sqrt[15]; c = 1/2; x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}]; Flatten[Position[t1, 1]] (* A194398 *) t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}]; Flatten[Position[t2, 1]] (* A194399 *) t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 800}]; Flatten[Position[t3, 1]] (* A194400 *)
Comments