A194402
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) = 0, where r=(1+sqrt(5))/2 and < > denotes fractional part.
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 26, 28, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 60, 62, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 98, 100, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 132, 134, 140, 142, 144, 146, 148, 150, 152, 154
Offset: 1
Keywords
Programs
-
Mathematica
r = GoldenRatio; c = 1/2; x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}]; Flatten[Position[t1, 1]] (* A194401 *) t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 200}]; Flatten[Position[t2, 1]] (* A194402 *) %/2 (* A194403 *) t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 200}]; Flatten[Position[t3, 1]] (* A194404 *)
Comments