A194423
Numbers m such that Sum_{k=1..m} (<2/3 + k*r> - ) = 0, where r=sqrt(2) and < > denotes fractional part.
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 42, 45, 48, 54, 57, 60, 66, 69, 75, 78, 81, 87, 90, 93, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 141, 144, 147, 153, 156, 159, 165, 168, 171, 183, 195, 240, 243, 246, 252, 255, 258, 264
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2043
Crossrefs
Cf. A194368.
Programs
-
Mathematica
r = Sqrt[2]; c = 2/3; x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 300}]; Flatten[Position[t1, 1]] (* A194422 *) t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}]; Flatten[Position[t2, 1]] (* A194423 *) %/3 (* A194424 *) t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 300}]; Flatten[Position[t3, 1]] (* A194425 *)
Comments