This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194443 #22 Sep 26 2015 01:17:13 %S A194443 0,1,2,4,4,4,4,7,8,4,4,8,12,8,8,13,16,4,4,8,12,16,16,20,24,12,8,16,28, %T A194443 16,16,25,32,4,4,8,12,16,16,22,32,26,20,24,40,32,40,33,48,20,8,16,28, %U A194443 40,44,50,60,28,16,32,60,32,32,49,64,4,4,8 %N A194443 Number of toothpicks or D-toothpicks added at n-th stage to the structure of A194442. %C A194443 Essentially the first differences of A194442. It appears that the structure of the "narrow" triangle is much more regular about n=2^k, see formula section. %H A194443 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A194443 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a> %F A194443 Conjectures for n = 2^k+j, if -6<=j<=6: %F A194443 a(2^k-6) = 2^(k-2), if k >= 3. %F A194443 a(2^k-5) = 2^(k-1), if k >= 3. %F A194443 a(2^k-4) = 2^k-4, if k >= 2. %F A194443 a(2^k-3) = 2^(k-1), if k >= 3. %F A194443 a(2^k-2) = 2^(k-1), if k >= 2. %F A194443 a(2^k-1) = 3*2^(k-2)+1, if k >= 2. %F A194443 a(2^k+0) = 2^k, if k >= 0. %F A194443 a(2^k+1) = 4, if k >= 1. %F A194443 a(2^k+2) = 4, if k >= 1. %F A194443 a(2^k+3) = 8, if k >= 3. %F A194443 a(2^k+4) = 12, if k >= 3. %F A194443 a(2^k+5) = 16, if k >= 4. %F A194443 a(2^k+6) = 16, if k >= 4. %F A194443 End of conjectures. %e A194443 If written as a triangle: %e A194443 0, %e A194443 1, %e A194443 2, %e A194443 4,4, %e A194443 4,4,7,8, %e A194443 4,4,8,12,8,8,13,16, %e A194443 4,4,8,12,16,16,20,24,12,8,16,28,16,16,25,32, %e A194443 4,4,8,12,16,16,22,32,26,20,24,40,32,40,33,48,20,8,16,28... %e A194443 . %e A194443 It appears that rows converge to A194697. %Y A194443 Cf. A139251, A160121, A160407, A161831, A194271, A194441, A194442, A194445, A194694, A194695, A194697. %K A194443 nonn %O A194443 0,3 %A A194443 _Omar E. Pol_, Aug 29 2011