This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194446 #84 Jul 25 2020 11:58:46 %S A194446 1,2,3,1,5,1,7,1,2,1,11,1,2,1,15,1,2,1,4,1,1,22,1,2,1,4,1,2,1,30,1,2, %T A194446 1,4,1,1,7,1,2,1,1,42,1,2,1,4,1,2,1,8,1,1,3,1,1,56,1,2,1,4,1,1,7,1,2, %U A194446 1,1,12,1,2,1,4,1,2,1,1,77,1,2,1 %N A194446 Number of parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j). %C A194446 For the definition of "region" of the set of partitions of j, see A206437. %C A194446 a(n) is also the number of positive integers in the n-th row of triangle A186114. a(n) is also the number of positive integers in the n-th row of triangle A193870. %C A194446 Also triangle read by rows: T(j,k) = number of parts in the k-th region of the last section of the set of partitions of j. See example. For more information see A135010. %C A194446 a(n) is also the length of the n-th vertical line segment in the minimalist diagram of regions and partitions. The length of the n-th horizontal line segment is A141285(n). See also A194447. - _Omar E. Pol_, Mar 04 2012 %C A194446 From _Omar E. Pol_, Aug 19 2013: (Start) %C A194446 In order to construct this sequence with a cellular automaton we use the following rules: We start in the first quadrant of the square grid with no toothpicks. At stage n we place A141285(n) toothpicks of length 1 connected by their endpoints in horizontal direction starting from the point (0, n). Then we place toothpicks of length 1 connected by their endpoints in vertical direction starting from the exposed toothpick endpoint downward up to touch the structure or up to touch the x-axis. a(n) is the number of toothpicks in vertical direction added at n-th stage (see example section and A139250, A225600, A225610). %C A194446 a(n) is also the length of the n-th descendent line segment in an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). See Example section. For more information see A211978, A220517, A225600. %C A194446 (End) %C A194446 The equivalent sequence for compositions is A006519. - _Omar E. Pol_, Aug 22 2013 %H A194446 Robert Price, <a href="/A194446/b194446.txt">Table of n, a(n) for n = 1..5603</a> %H A194446 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a> %F A194446 a(n) = A141285(n) - A194447(n). - _Omar E. Pol_, Mar 04 2012 %e A194446 Written as an irregular triangle the sequence begins: %e A194446 1; %e A194446 2; %e A194446 3; %e A194446 1, 5; %e A194446 1, 7; %e A194446 1, 2, 1, 11; %e A194446 1, 2, 1, 15; %e A194446 1, 2, 1, 4, 1, 1, 22; %e A194446 1, 2, 1, 4, 1, 2, 1, 30; %e A194446 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42; %e A194446 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56; %e A194446 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77; %e A194446 ... %e A194446 From _Omar E. Pol_, Aug 18 2013: (Start) %e A194446 Illustration of initial terms (first seven regions): %e A194446 . _ _ _ _ _ %e A194446 . _ _ _ |_ _ _ _ _| %e A194446 . _ _ _ _ |_ _ _| |_ _| %e A194446 . _ _ |_ _ _ _| |_| %e A194446 . _ _ _ |_ _| |_ _| |_| %e A194446 . _ _ |_ _ _| |_| |_| %e A194446 . _ |_ _| |_| |_| |_| %e A194446 . |_| |_| |_| |_| |_| %e A194446 . %e A194446 . 1 2 3 1 5 1 7 %e A194446 . %e A194446 The next figure shows a minimalist diagram of the first seven regions. The n-th horizontal line segment has length A141285(n). a(n) is the length of the n-th vertical line segment, which is the vertical line segment ending in row n (see also A225610). %e A194446 . _ _ _ _ _ %e A194446 . 7 _ _ _ | %e A194446 . 6 _ _ _|_ | %e A194446 . 5 _ _ | | %e A194446 . 4 _ _|_ | | %e A194446 . 3 _ _ | | | %e A194446 . 2 _ | | | | %e A194446 . 1 | | | | | %e A194446 . %e A194446 . 1 2 3 4 5 %e A194446 . %e A194446 Illustration of initial terms from an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). a(n) is the length of the n-th descendent line segment. %e A194446 . /\ %e A194446 . / \ %e A194446 . /\ / \ %e A194446 . / \ / \ %e A194446 . /\ / \ /\/ \ %e A194446 . /\ / \ /\/ \ / 1 \ %e A194446 . /\/ \/ \/ 1 \/ \ %e A194446 . 1 2 3 5 7 %e A194446 . %e A194446 (End) %t A194446 lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2]; %t A194446 A194446 = {}; l = {}; %t A194446 For[j = 1, j <= 30, j++, %t A194446 mx = Max@lex[j][[j]]; AppendTo[l, mx]; %t A194446 For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]]; %t A194446 AppendTo[A194446, j - i]; %t A194446 ]; %t A194446 A194446 (* _Robert Price_, Jul 25 2020 *) %Y A194446 Row j has length A187219(j). Right border gives A000041, j >= 1. Records give A000041, j >= 1. Row sums give A138137. %Y A194446 Cf. A002865, A006128, A135010, A138121, A186114, A186412, A193870, A194436, A194437, A194438, A194439, A194447. %K A194446 nonn,tabf %O A194446 1,2 %A A194446 _Omar E. Pol_, Nov 26 2011