cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194446 Number of parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).

This page as a plain text file.
%I A194446 #84 Jul 25 2020 11:58:46
%S A194446 1,2,3,1,5,1,7,1,2,1,11,1,2,1,15,1,2,1,4,1,1,22,1,2,1,4,1,2,1,30,1,2,
%T A194446 1,4,1,1,7,1,2,1,1,42,1,2,1,4,1,2,1,8,1,1,3,1,1,56,1,2,1,4,1,1,7,1,2,
%U A194446 1,1,12,1,2,1,4,1,2,1,1,77,1,2,1
%N A194446 Number of parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
%C A194446 For the definition of "region" of the set of partitions of j, see A206437.
%C A194446 a(n) is also the number of positive integers in the n-th row of triangle A186114. a(n) is also the number of positive integers in the n-th row of triangle A193870.
%C A194446 Also triangle read by rows: T(j,k) = number of parts in the k-th region of the last section of the set of partitions of j. See example. For more information see A135010.
%C A194446 a(n) is also the length of the n-th vertical line segment in the minimalist diagram of regions and partitions. The length of the n-th horizontal line segment is A141285(n). See also A194447. - _Omar E. Pol_, Mar 04 2012
%C A194446 From _Omar E. Pol_, Aug 19 2013: (Start)
%C A194446 In order to construct this sequence with a cellular automaton we use the following rules: We start in the first quadrant of the square grid with no toothpicks. At stage n we place A141285(n) toothpicks of length 1 connected by their endpoints in horizontal direction starting from the point (0, n). Then we place toothpicks of length 1 connected by their endpoints in vertical direction starting from the exposed toothpick endpoint downward up to touch the structure or up to touch the x-axis. a(n) is the number of toothpicks in vertical direction added at n-th stage (see example section and A139250, A225600, A225610).
%C A194446 a(n) is also the length of the n-th descendent line segment in an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). See Example section. For more information see A211978, A220517, A225600.
%C A194446 (End)
%C A194446 The equivalent sequence for compositions is A006519. - _Omar E. Pol_, Aug 22 2013
%H A194446 Robert Price, <a href="/A194446/b194446.txt">Table of n, a(n) for n = 1..5603</a>
%H A194446 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a>
%F A194446 a(n) = A141285(n) - A194447(n). - _Omar E. Pol_, Mar 04 2012
%e A194446 Written as an irregular triangle the sequence begins:
%e A194446   1;
%e A194446   2;
%e A194446   3;
%e A194446   1, 5;
%e A194446   1, 7;
%e A194446   1, 2, 1, 11;
%e A194446   1, 2, 1, 15;
%e A194446   1, 2, 1,  4, 1, 1, 22;
%e A194446   1, 2, 1,  4, 1, 2,  1, 30;
%e A194446   1, 2, 1,  4, 1, 1,  7,  1, 2, 1, 1, 42;
%e A194446   1, 2, 1,  4, 1, 2,  1,  8, 1, 1, 3,  1, 1, 56;
%e A194446   1, 2, 1,  4, 1, 1,  7,  1, 2, 1, 1, 12, 1,  2, 1, 4, 1, 2, 1, 1, 77;
%e A194446   ...
%e A194446 From _Omar E. Pol_, Aug 18 2013: (Start)
%e A194446 Illustration of initial terms (first seven regions):
%e A194446 .                                             _ _ _ _ _
%e A194446 .                                     _ _ _  |_ _ _ _ _|
%e A194446 .                           _ _ _ _  |_ _ _|       |_ _|
%e A194446 .                     _ _  |_ _ _ _|                 |_|
%e A194446 .             _ _ _  |_ _|     |_ _|                 |_|
%e A194446 .       _ _  |_ _ _|             |_|                 |_|
%e A194446 .   _  |_ _|     |_|             |_|                 |_|
%e A194446 .  |_|   |_|     |_|             |_|                 |_|
%e A194446 .
%e A194446 .   1     2       3     1         5       1           7
%e A194446 .
%e A194446 The next figure shows a minimalist diagram of the first seven regions. The n-th horizontal line segment has length A141285(n). a(n) is the length of the n-th vertical line segment, which is the vertical line segment ending in row n (see also A225610).
%e A194446 .      _ _ _ _ _
%e A194446 .  7   _ _ _    |
%e A194446 .  6   _ _ _|_  |
%e A194446 .  5   _ _    | |
%e A194446 .  4   _ _|_  | |
%e A194446 .  3   _ _  | | |
%e A194446 .  2   _  | | | |
%e A194446 .  1    | | | | |
%e A194446 .
%e A194446 .      1 2 3 4 5
%e A194446 .
%e A194446 Illustration of initial terms from an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). a(n) is the length of the n-th descendent line segment.
%e A194446 .                                    /\
%e A194446 .                                   /  \
%e A194446 .                      /\          /    \
%e A194446 .                     /  \        /      \
%e A194446 .            /\      /    \    /\/        \
%e A194446 .       /\  /  \  /\/      \  / 1          \
%e A194446 .    /\/  \/    \/ 1        \/              \
%e A194446 .     1   2     3           5               7
%e A194446 .
%e A194446 (End)
%t A194446 lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
%t A194446 A194446 = {}; l = {};
%t A194446 For[j = 1, j <= 30, j++,
%t A194446   mx = Max@lex[j][[j]]; AppendTo[l, mx];
%t A194446   For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
%t A194446   AppendTo[A194446, j - i];
%t A194446   ];
%t A194446 A194446   (* _Robert Price_, Jul 25 2020 *)
%Y A194446 Row j has length A187219(j). Right border gives A000041, j >= 1. Records give A000041, j >= 1. Row sums give A138137.
%Y A194446 Cf. A002865, A006128, A135010, A138121, A186114, A186412, A193870, A194436, A194437, A194438, A194439, A194447.
%K A194446 nonn,tabf
%O A194446 1,2
%A A194446 _Omar E. Pol_, Nov 26 2011