This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194454 #34 Sep 08 2022 08:45:58 %S A194454 1,15,53,115,201,311,445,603,785,991,1221,1475,1753,2055,2381,2731, %T A194454 3105,3503,3925,4371,4841,5335,5853,6395,6961,7551,8165,8803,9465, %U A194454 10151,10861,11595,12353,13135,13941,14771,15625,16503,17405,18331,19281 %N A194454 a(n) = 12*n^2 + 2*n + 1. %C A194454 A142241 gives the first differences. %C A194454 Inverse binomial transform of this sequence: 1, 14, 24, 0, 0 (0 continued). %C A194454 a(n)*a(n-1)-11 is a square, precisely 4*A051866(n)^2. %C A194454 Sequence found by reading the line from 1, in the direction 1, 15, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - _Omar E. Pol_, Jul 18 2012 %H A194454 Bruno Berselli, <a href="/A194454/b194454.txt">Table of n, a(n) for n = 0..1000</a> %H A194454 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A194454 G.f.: (1+x)*(1+11*x)/(1-x)^3. %F A194454 a(n) = A154106(-n-1). %F A194454 a(n) = 2*A049453(n) + 1. %F A194454 a(n) = A051866(n) + A051866(n+1). - _Charlie Marion_, Nov 15 2019 %F A194454 E.g.f.: exp(x)*(1 + 14*x + 12*x^2). - _Stefano Spezia_, Nov 15 2019 %e A194454 Using these numbers we can write: %e A194454 1, 15, 53, 115, 201, 311, 445, 603, 785, 991, 1221, ... %e A194454 0, 0, 1, 15, 53, 115, 201, 311, 445, 603, 785, ... %e A194454 0, 0, 0, 0, 1, 15, 53, 115, 201, 311, 445, ... %e A194454 0, 0, 0, 0, 0, 0, 1, 15, 53, 115, 201, ... %e A194454 0, 0, 0, 0, 0, 0, 0, 0, 1, 15, 53, ... %e A194454 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ... %e A194454 ====================================================== %e A194454 The sums of the columns give the sequence A172073 (after 0): %e A194454 1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, ... %t A194454 Table[12 n^2 + 2 n + 1, {n, 0, 50}] (* _Vincenzo Librandi_, Mar 26 2013 *) %o A194454 (Magma) [12*n^2+2*n+1: n in [0..40]]; %o A194454 (PARI) for(n=0, 40, print1(12*n^2+2*n+1", ")); %Y A194454 Cf. A154106, A172073, A049453. %K A194454 nonn,easy %O A194454 0,2 %A A194454 _Bruno Berselli_, Aug 24 2011