cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194460 a(n) is the number of basic ideals in the standard Borel subalgebra of the untwisted affine Lie algebra sl_n.

This page as a plain text file.
%I A194460 #61 Sep 08 2022 08:45:58
%S A194460 1,4,18,82,370,1648,7252,31582,136338,584248,2488156,10540484,
%T A194460 44450068,186715072,781628008,3262239862,13579324498,56391614632,
%U A194460 233686316428,966556003132,3990942300508,16453094542432,67733512006168
%N A194460 a(n) is the number of basic ideals in the standard Borel subalgebra of the untwisted affine Lie algebra sl_n.
%C A194460 a(n) also equals the number of pairs (p,q) of Dyck paths of semilength n, such that the first peak of q has height at least n-l(p), where l(p) is the height of the last peak of p, and the last peak of q has height at least n-f(p), where f(p) is the height of the first peak of p.
%C A194460 From _Per Alexandersson_, May 26 2018: (Start)
%C A194460 a(n) is also equal to the number of circular arc digraphs on n vertices.
%C A194460 a(n) is equal to the number of lists b(1),b(2),...,b(n) such that 0 <= b(i) < n and b(i)-1 <= b(i+1) for i=1..n-1 and b(n)-1 <= b(1).
%C A194460 The subset of such sequences such that b(n)=0 is given by the Catalan numbers, A000108. (End)
%C A194460 Christian Krattenthaler has shown that a(n) = (n+2)*binomial(2*n-1,n-1) - 2^(2*n-1), which also implies the above recursion observed by _D. S. McNeil_. - _Volodymyr Mazorchuk_, Aug 26 2011
%H A194460 G. C. Greubel, <a href="/A194460/b194460.txt">Table of n, a(n) for n = 1..1000</a>
%H A194460 Per Alexandersson, Svante Linusson, Samu Potka, <a href="https://arxiv.org/abs/1903.01327">The cyclic sieving phenomenon on circular Dyck paths</a>, arXiv:1903.01327 [math.CO], 2019.
%H A194460 Per Alexandersson and Greta Panova, <a href="https://arxiv.org/abs/1705.10353">LLT polynomials, chromatic quasisymmetric functions and graphs with cycles</a>, arXiv:1705.10353 [math.CO], 2017. See Lemma 5.
%H A194460 K. Baur and V. Mazorchuk; <a href="http://arxiv.org/abs/1108.3659">Combinatorial analogues of ad-nilpotent ideals for untwisted affine Lie algebras</a>, arXiv:1108.3659 [math.RA], 2011.
%F A194460 It appears that the sequence is given by a(1)=1, a(n) = 4*a(n-1) + 2*binomial(2*n-3, n-3). - _D. S. McNeil_, Aug 25 2011
%F A194460 0 =  a(n)*(+2304*a(n+1) -3744*a(n+2) +1464*a(n+3) -168*a(n+4)) +a(n+1)*(-96*a(n+1) +1192*a(n+2) -730*a(n+3) +102*a(n+4)) +a(n+2)*(-78*a(n+2) +99*a(n+3) -19*a(n+4)) +a(n+3)*(-3*a(n+3) +a(n+4)) for all n>0. - _Michael Somos_, Jun 28 2018
%e A194460 G.f. = x + 4*x^2 + 18*x^3 + 82*x^4 + 370*x^5 + 1648*x^6 + 7252*x^7 + 31582*x^8 + ... - _Michael Somos_, Jun 28 2018
%t A194460 a[n_] := (n+2) Binomial[2n-1, n-1] - 2^(2n-1);
%t A194460 Array[a, 23] (* _Jean-François Alcover_, Jul 27 2018, after _Michael Somos_ *)
%o A194460 (Sage)
%o A194460 def A194460(n):
%o A194460     if n == 1: return 1
%o A194460     cf = CachedFunction(lambda i,j,n: binomial(n-1-i+n-1-j,n-i-1)-binomial(n-1-i+n-1-j, n-i-j-1))
%o A194460     CP = cartesian_product
%o A194460     return sum(sum(cf(i,j,n)*cf(k,m,n) for k,m in CP([[n-i..n],[n-j..n]])) for i,j in CP([[1..n],[1..n]]))
%o A194460 # _D. S. McNeil_, Aug 25 2011
%o A194460 (PARI) {a(n) = if( n<1, 0, (n+2) * binomial(2*n-1, n-1) - 2^(2*n-1))}; /* _Michael Somos_, Jun 28 2018 */
%o A194460 (Magma) [(n+2)*Binomial(2*n-1, n-1) - 2^(2*n-1): n in [1..30]]; // _G. C. Greubel_, Aug 13 2018
%K A194460 nonn
%O A194460 1,2
%A A194460 _Volodymyr Mazorchuk_, Aug 24 2011
%E A194460 More terms from _D. S. McNeil_, Aug 25 2011