A194475 Number of ways to arrange 3 indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.
0, 1, 17, 105, 410, 1225, 3066, 6762, 13560, 25245, 44275, 73931, 118482, 183365, 275380, 402900, 576096, 807177, 1110645, 1503565, 2005850, 2640561, 3434222, 4417150, 5623800, 7093125, 8868951, 11000367, 13542130, 16555085, 20106600
Offset: 1
Keywords
Examples
The 17 solutions for 3 X 3 X 3: . 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 [edited by _Jon E. Schoenfield_, May 05 2018]
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A194480.
Formula
Empirical: a(n) = (1/48)*n^6 + (1/16)*n^5 - (3/16)*n^4 + (1/48)*n^3 + (1/6)*n^2 - (1/12)*n.
Empirical g.f.: x^2*(1 + 10*x + 7*x^2 - 3*x^3) / (1 - x)^7. - Colin Barker, May 05 2018
Comments