A194476 Number of ways to arrange 4 indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.
0, 0, 6, 114, 879, 4284, 15729, 47565, 124803, 293733, 634293, 1277133, 2426424, 4389567, 7615062, 12739902, 20647962, 32540958, 50023656, 75205116, 110817861, 160356966, 228241167, 319998195, 442476645, 604086795, 815072895, 1087819551
Offset: 1
Keywords
Examples
All solutions for 3 X 3 X 3: ....0......1......0......1......1......0 ...1.1....0.1....1.1....1.1....1.0....1.1 ..0.1.1..1.1.0..1.1.0..0.1.0..0.1.1..1.0.1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..112
Crossrefs
Cf. A194480
Formula
Empirical: a(n) = (1/384)*n^8 + (1/96)*n^7 - (5/64)*n^6 + (13/240)*n^5 + (27/128)*n^4 - (23/96)*n^3 - (13/96)*n^2 + (7/40)*n.
Empirical g.f.: x^3*(2 + 20*x + 23*x^2 - 9*x^3 - x^4) / (1 - x)^9. - Colin Barker, May 05 2018
Comments