A194481 Number of ways to arrange 4 indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.
0, 0, 15, 207, 1347, 5922, 20307, 58527, 148239, 339669, 718344, 1422564, 2666664, 4771221, 8201466, 13615266, 21922146, 34354926, 52555653, 78677613, 115505313, 166594428, 236433813, 330631785, 456128985, 621440235, 836927910, 1115109450
Offset: 1
Keywords
Examples
Some solutions for 4 X 4 X 4: .....0........0........1........0........0........0........0........0 ....1.0......0.0......0.0......0.0......1.0......1.0......0.1......1.0 ...1.1.1....1.0.1....1.0.1....1.0.1....1.0.0....1.0.0....0.0.1....1.0.1 ..0.0.0.0..1.1.0.0..0.0.1.0..0.0.1.1..0.1.0.1..0.0.1.1..1.0.0.1..0.0.0.1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..84
Crossrefs
Cf. A194485.
Formula
Empirical: a(n) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n.
Empirical g.f.: x^3*(5 + 24*x + 8*x^2 - 3*x^3 + x^4) / (1 - x)^9. - Colin Barker, May 05 2018
Comments