cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A194481 Number of ways to arrange 4 indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.

Original entry on oeis.org

0, 0, 15, 207, 1347, 5922, 20307, 58527, 148239, 339669, 718344, 1422564, 2666664, 4771221, 8201466, 13615266, 21922146, 34354926, 52555653, 78677613, 115505313, 166594428, 236433813, 330631785, 456128985, 621440235, 836927910, 1115109450
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 4 of A194485.

Examples

			Some solutions for 4 X 4 X 4:
.....0........0........1........0........0........0........0........0
....1.0......0.0......0.0......0.0......1.0......1.0......0.1......1.0
...1.1.1....1.0.1....1.0.1....1.0.1....1.0.0....1.0.0....0.0.1....1.0.1
..0.0.0.0..1.1.0.0..0.0.1.0..0.0.1.1..0.1.0.1..0.0.1.1..1.0.0.1..0.0.0.1
		

Crossrefs

Cf. A194485.

Formula

Empirical: a(n) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n.
Empirical g.f.: x^3*(5 + 24*x + 8*x^2 - 3*x^3 + x^4) / (1 - x)^9. - Colin Barker, May 05 2018

A194482 Number of ways to arrange 5 indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.

Original entry on oeis.org

0, 0, 6, 234, 2817, 19362, 94584, 365904, 1193283, 3413619, 8800704, 20845968, 46017972, 95710797, 189154056, 357631176, 650438802, 1143119610, 1948614426, 3232108278, 5230489803, 8277505236, 12835867968, 19537783320, 29235566685
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 5 of A194485.

Examples

			Some solutions for 4 X 4 X 4:
.....1........1........0........1........0........0........0........0
....1.1......1.0......1.1......0.0......0.1......1.1......1.0......1.1
...0.1.1....0.1.0....0.1.0....1.0.1....0.1.0....1.0.1....1.0.0....1.0.0
..0.0.0.0..0.1.0.1..0.1.1.0..1.1.0.0..0.1.1.1..0.1.0.0..1.1.0.1..1.1.0.0
		

Crossrefs

Cf. A194485.

Formula

Empirical: a(n) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n.
Empirical g.f.: 3*x^3*(2 + 56*x + 191*x^2 + 85*x^3 - 31*x^4 + 11*x^5 + x^6) / (1 - x)^11. - Colin Barker, May 05 2018

A194483 Number of ways to arrange 6 indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.

Original entry on oeis.org

0, 0, 1, 165, 4135, 47010, 337860, 1790472, 7622340, 27489825, 87018360, 247874770, 647091588, 1569661600, 3576049620, 7716906900, 15881735580, 31347485274, 59618165895, 109678780695, 195827638105, 340301983890, 576974687080
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 6 of A194485.

Examples

			Some solutions for 5 X 5 X 5:
......0..........1..........0..........0..........0..........0..........0
.....0.1........1.0........0.1........0.1........0.1........1.0........1.0
....0.1.0......0.1.1......0.0.1......1.0.1......0.1.0......0.1.0......0.1.1
...0.1.1.0....1.0.0.0....0.1.0.1....1.0.1.1....1.0.0.1....0.1.0.0....0.1.0.1
..0.0.1.1.0..0.0.1.0.0..1.0.0.1.0..0.0.0.0.0..1.0.0.0.1..0.0.1.1.1..1.0.0.0.0
		

Formula

Empirical: a(n) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n

A194484 Number of ways to arrange 7 indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.

Original entry on oeis.org

0, 0, 0, 63, 4080, 83745, 927471, 6924357, 39196161, 180512640, 708150465, 2442836682, 7582054194, 21540941994, 56763356130, 140189208510, 327211061058, 726712057836, 1544399756262, 3155463833625, 6223010262480, 11886291766899
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 7 of A194485.

Examples

			Some solutions for 5 X 5 X 5:
......1..........0..........0..........1..........0..........0..........0
.....0.1........1.0........1.1........0.1........1.1........0.1........0.0
....1.1.1......0.1.0......1.1.1......1.0.0......0.0.0......0.1.1......1.0.1
...0.0.0.0....1.1.0.0....1.0.1.0....1.0.1.0....1.1.0.1....0.1.1.0....1.1.0.1
..1.1.0.0.0..0.1.0.1.1..0.0.0.0.0..0.1.0.0.1..0.1.0.1.0..1.0.0.0.1..1.0.0.1.0
		

Formula

Empirical: a(n) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n.
Showing 1-4 of 4 results.