cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A194493 Number of ways to arrange 3 nonattacking queens on the lower triangle of an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 12, 82, 330, 1008, 2566, 5742, 11652, 21926, 38802, 65322, 105428, 164214, 248022, 364764, 523998, 737334, 1018488, 1383768, 1852104, 2445628, 3189660, 4113396, 5249848, 6636636, 8315880, 10335110, 12747090, 15610860, 18991490
Offset: 1

Views

Author

R. H. Hardin Aug 26 2011

Keywords

Comments

Column 3 of A194498

Examples

			Some solutions for 5X5
..0..........0..........0..........0..........0..........0..........1
..1.0........0.1........1.0........0.0........1.0........0.1........0.0
..0.0.0......0.0.0......0.0.0......1.0.0......0.0.1......0.0.0......0.1.0
..0.1.0.0....1.0.0.0....0.0.0.1....0.0.0.1....0.0.0.0....1.0.0.0....0.0.0.0
..0.0.0.0.1..0.0.1.0.0..0.1.0.0.0..0.1.0.0.0..0.1.0.0.0..0.0.0.1.0..0.0.1.0.0
		

Formula

Empirical: a(n) = 3*a(n-1) -7*a(n-3) +3*a(n-4) +6*a(n-5) -6*a(n-7) -3*a(n-8) +7*a(n-9) -3*a(n-11) +a(n-12), [R. H. Hardin Aug 26 2011]
G.f.: -2*x^5*(18*x^5 + 40*x^4 + 51*x^3 + 42*x^2 + 23*x + 6)/((x-1)^7*(x+1)^3*(x^2+x+1))
Explicit formula: n^6/48 - 11*n^5/48 + 15*n^4/16 - 241*n^3/144 + 17*n^2/16 - 17*n/144 + (n^2/8 - 9*n/8 + 17/8)*floor(n/2) + 2/3*floor(n/3), [Vaclav Kotesovec, Apr 08 2012]

A194494 Number of ways to arrange 4 nonattacking queens on the lower triangle of an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 118, 802, 3708, 13280, 39734, 104000, 244948, 530632, 1072776, 2048056, 3723314, 6492342, 10915254, 17777372, 28147380, 43465356, 65624634, 97098802, 141050688, 201509798, 283514112, 393348562, 538725268, 729098516
Offset: 1

Views

Author

R. H. Hardin Aug 26 2011

Keywords

Comments

Column 4 of A194498

Examples

			Some solutions for 6X6
..0............0............0............0............0............0
..1.0..........0.0..........0.0..........0.1..........0.0..........0.1
..0.0.0........1.0.0........0.0.1........0.0.0........0.1.0........0.0.0
..0.1.0.0......0.0.1.0......1.0.0.0......1.0.0.0......0.0.0.1......0.0.1.0
..0.0.0.0.1....0.0.0.0.1....0.0.0.1.0....0.0.1.0.0....1.0.0.0.0....1.0.0.0.0
..0.0.1.0.0.0..0.1.0.0.0.0..0.1.0.0.0.0..0.0.0.0.1.0..0.0.1.0.0.0..0.0.0.1.0.0
		

Formula

Empirical: a(n) = 4*a(n-2) +3*a(n-3) -5*a(n-4) -11*a(n-5) -3*a(n-6) +11*a(n-7) +14*a(n-8) +6*a(n-9) -7*a(n-10) -16*a(n-11) -14*a(n-12) +14*a(n-14) +16*a(n-15) +7*a(n-16) -6*a(n-17) -14*a(n-18) -11*a(n-19) +3*a(n-20) +11*a(n-21) +5*a(n-22) -3*a(n-23) -4*a(n-24) +a(n-26), [R. H. Hardin, Aug 26 2011]
G.f.: -2*x^6*(287*x^18 + 1545*x^17 + 4929*x^16 + 11689*x^15 + 22673*x^14 + 36995*x^13 + 51875*x^12 + 63203*x^11 + 67465*x^10 + 63168*x^9 + 51807*x^8 + 36900*x^7 + 22544*x^6 + 11587*x^5 + 4879*x^4 + 1606*x^3 + 385*x^2 + 59*x + 4)/((x-1)^9*(x+1)^5*(x^2+1)*(x^2+x+1)^3*(x^4+x^3+x^2+x+1))
Explicit formula: n^8/384 - n^7/16 + 23*n^6/36 - 1301*n^5/360 + 14125*n^4/1152 - 8013*n^3/320 + 83147*n^2/2880 - 2089*n/160 + (n^4/32 - 17*n^3/24 + 193*n^2/32 - 2209*n/96 + 439/16)*floor(n/2) + (n^2/3 - 13*n/3 + 136/9)*floor(n/3) - 28/9*floor((n+1)/3) + 23/4*floor(n/4) - 3*floor((n+1)/4) + 4/5*floor(n/5) - 2/5*floor((n+2)/5) - 2/5*floor((n+3)/5), [Vaclav Kotesovec, Apr 08 2012]

A194495 Number of ways to arrange 5 nonattacking queens on the lower triangle of an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 114, 1384, 9890, 50662, 205512, 698688, 2074530, 5525902, 13476246, 30522678, 64968996, 131070600, 252492296, 467017054, 833501728, 1440839952, 2420878990, 3964168632, 6342428908, 9934738024, 15264432954
Offset: 1

Views

Author

R. H. Hardin Aug 26 2011

Keywords

Comments

Column 5 of A194498

Examples

			All solutions for 7X7
..0..............0..............0..............0
..0.0............0.0............0.0............0.0
..1.0.0..........0.1.0..........1.0.0..........0.0.1
..0.0.0.1........0.0.0.1........0.0.1.0........1.0.0.0
..0.1.0.0.0......1.0.0.0.0......0.0.0.0.1......0.0.0.1.0
..0.0.0.0.1.0....0.0.1.0.0.0....0.1.0.0.0.0....0.1.0.0.0.0
..0.0.1.0.0.0.0..0.0.0.0.1.0.0..0.0.0.1.0.0.0..0.0.0.0.1.0.0
		

A194496 Number of ways to arrange 6 nonattacking queens on the lower triangle of an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 64, 1644, 19306, 146718, 820218, 3670288, 13846830, 45661556, 134896662, 364019248, 909633276, 2129318414, 4709083054, 9912162234, 19970298696, 38707229282, 72458290216, 131476840106, 231906957348
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 6 of A194498.

Examples

			Some solutions for 9 X 9:
  0                  0                  0                  0
  0 1                0 0                1 0                0 0
  0 0 0              1 0 0              0 0 0              0 1 0
  1 0 0 0            0 0 0 0            0 0 0 0            0 0 0 0
  0 0 0 0 0          0 0 0 0 1          0 0 0 0 1          1 0 0 0 0
  0 0 0 1 0 0        0 0 1 0 0 0        0 1 0 0 0 0        0 0 1 0 0 0
  0 0 0 0 0 1 0      0 0 0 0 0 1 0      0 0 0 1 0 0 0      0 0 0 0 1 0 0
  0 0 1 0 0 0 0 0    0 0 0 1 0 0 0 0    0 0 0 0 0 1 0 0    0 0 0 0 0 0 0 1
  0 0 0 0 1 0 0 0 0  0 1 0 0 0 0 0 0 0  0 0 1 0 0 0 0 0 0  0 0 0 1 0 0 0 0 0
		

A194497 Number of ways to arrange 7 nonattacking queens on the lower triangle of an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1210, 27198, 322782, 2564988, 15372702, 74615814, 306900410, 1105651074, 3569169990, 10512880400, 28628691842, 72880455042, 174895586328, 398556484840, 867314768878, 1811576604968, 3646385889888
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 7 of A194498.

Examples

			Some solutions for 10 X 10:
  0                    0                    0
  0 0                  0 0                  0 0
  0 0 0                0 0 0                0 0 0
  0 1 0 0              0 1 0 0              0 0 0 1
  0 0 0 1 0            0 0 0 1 0            1 0 0 0 0
  1 0 0 0 0 0          0 0 0 0 0 1          0 0 1 0 0 0
  0 0 0 0 0 0 1        1 0 0 0 0 0 0        0 0 0 0 0 1 0
  0 0 0 0 1 0 0 0      0 0 1 0 0 0 0 0      0 1 0 0 0 0 0 0
  0 0 1 0 0 0 0 0 0    0 0 0 0 1 0 0 0 0    0 0 0 0 0 0 1 0 0
  0 0 0 0 0 1 0 0 0 0  0 0 0 0 0 0 1 0 0 0  0 0 0 0 1 0 0 0 0 0
		
Showing 1-5 of 5 results.