cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194508 First coordinate of the (2,3)-Lagrange pair for n.

This page as a plain text file.
%I A194508 #26 Mar 30 2022 22:53:29
%S A194508 -1,1,0,2,1,0,2,1,3,2,1,3,2,4,3,2,4,3,5,4,3,5,4,6,5,4,6,5,7,6,5,7,6,8,
%T A194508 7,6,8,7,9,8,7,9,8,10,9,8,10,9,11,10,9,11,10,12,11,10,12,11,13,12,11,
%U A194508 13,12,14,13,12,14,13,15,14,13,15,14,16,15,14,16,15,17,16,15,17
%N A194508 First coordinate of the (2,3)-Lagrange pair for n.
%C A194508 Suppose that c and d are relatively prime integers satisfying 1 < c < d. Every integer n has a representation
%C A194508 (1) n = c*x + d*y
%C A194508 where x and y are integers satisfying
%C A194508 (2) |x - y| < d.
%C A194508 Let h = (c-1)*(d-1). If n >= h, there is exactly one pair (x,y) satisfying (1) and (2), and, for this pair, x >= 0 and y >= 0.
%C A194508 For n >= h, write (x,y) as (x(n),y(n)) and call this the (c,d)-Lagrange pair for n. If n > c*d then
%C A194508 (3) x(n) = x(n-c-d) + 1 and
%C A194508 (4) y(n) = y(n-c-d) + 1.
%C A194508 If n < h, then n may have more than one representation satisfying (1) and (2); e.g., 1 = 2*(-3) + 7*1 = 2*4 + 7*(-1). To extend the definition of (c,d)-Lagrange pair by stipulating a particular pair (x(n),y(n)) satisfying (1) and (2) for n < h, we reverse (3) and (4): x(n) = x(n+c+d) - 1 and y(n) = y(n+c+d) - 1 for all integers n. The initial numbers x(1) and y(1) so determined are also the numbers found by the Euclidean algorithm for 1 as a linear combination c*x + d*y.
%C A194508 Examples:
%C A194508   c  d      x(n)      y(n)
%C A194508   -  -    -------   -------
%C A194508   2  3    A194508   A194509
%C A194508   2  5    A194510   A194511
%C A194508   2  7    A194512   A194513
%C A194508   3  4    A194514   A194515
%C A194508   3  5    A194516   A194517
%C A194508   3  7    A194518   A194519
%C A194508   3  8    A194520   A194521
%C A194508   4  5    A194522   A194523
%C A194508   4  7    A194524   A194525
%C A194508   5  6    A194526   A194527
%C A194508   5  8    A194528   A194529
%D A194508 L. E. Dickson, History of the Theory of Numbers, vol. II:  Diophantine Analysis, Chelsea, 1952, page 47.
%H A194508 Robert Israel, <a href="/A194508/b194508.txt">Table of n, a(n) for n = 1..10000</a>
%H A194508 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F A194508 From _Robert Israel_, Jul 29 2019: (Start)
%F A194508 a(n+5) = a(n) + 1.
%F A194508 G.f.: x*(-1+2*x-x^2+2*x^3-x^4)/(1-x-x^5+x^6). (End)
%F A194508 a(n) = 2*n - 3*floor((3*n+2)/5). - _Ridouane Oudra_, Sep 06 2020
%F A194508 a(n) = n/5 + O(1). - _Charles R Greathouse IV_, Mar 30 2022
%e A194508 This table shows (x(n),y(n)) for 1 <= n <= 13:
%e A194508    n      1  2  3  4  5  6  7  8  9 10 11 12 13
%e A194508   ----   -- -- -- -- -- -- -- -- -- -- -- -- --
%e A194508   x(n)   -1  1  0  2  1  0  2  1  3  2  1  3  2
%e A194508   y(n)    1  0  1  0  1  2  1  2  1  2  3  2  3
%p A194508 A0:= [-1,1,0,2,0]:
%p A194508 f:= n -> A0[(n-1 mod 5)+1]+floor(n/5):
%p A194508 map(f, [$1..100]); # _Robert Israel_, Jul 29 2019
%t A194508 c = 2; d = 3;
%t A194508 x1 = {-1, 1, 0, 2, 1}; y1 = {1, 0, 1, 0, 1};
%t A194508 x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]
%t A194508 y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]
%t A194508 Table[x[n], {n, 1, 100}] (* A194508 *)
%t A194508 Table[y[n], {n, 1, 100}] (* A194509 *)
%t A194508 r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]
%t A194508 TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
%o A194508 (PARI) a(n)=2*n - (3*n+2)\5*3
%Y A194508 Cf. A193509-A194529.
%K A194508 sign,easy
%O A194508 1,4
%A A194508 _Clark Kimberling_, Aug 27 2011