A194509 Second coordinate of (2,3)-Lagrange pair for n.
1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 8, 7, 8, 7, 8, 9, 8, 9, 8, 9, 10, 9, 10, 9, 10, 11, 10, 11, 10, 11, 12, 11, 12, 11, 12, 13, 12, 13, 12, 13, 14, 13, 14, 13, 14, 15, 14, 15, 14, 15, 16, 15, 16, 15, 16, 17, 16
Offset: 1
Examples
This table shows (x(n),y(n)) for 1 <= n <= 13: n...... 1..2..3..4..5..6..7..8..9..10..11..12..13 x(n).. -1..1..0..2..1..0..2..1..3..2...1...3...2 y(n)... 1..0..1..0..1..2..1..2..1..2...3...2...3
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A194508.
Programs
-
Mathematica
c = 2; d = 3; x1 = {-1, 1, 0, 2, 1}; y1 = {1, 0, 1, 0, 1}; x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1] y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1] Table[x[n], {n, 1, 100}] (* A194508 *) Table[y[n], {n, 1, 100}] (* A194509 *) r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n] TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
Formula
From Chai Wah Wu, Jan 21 2020: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x*(x^4 - x^3 + x^2 - x + 1)/(x^6 - x^5 - x + 1). (End)
a(n) = n - 2*floor((2*n + 2)/5). - Ridouane Oudra, Dec 25 2020
a(n) = a(n-1) + (-1)^((n-1) mod 5) for n > 1. - Alexander Van Plantinga, Dec 14 2021
Comments