This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194513 #15 Dec 29 2020 02:52:01 %S A194513 -1,0,-1,0,1,0,1,0,1,0,1,0,1,2,1,2,1,2,1,2,1,2,3,2,3,2,3,2,3,2,3,4,3, %T A194513 4,3,4,3,4,3,4,5,4,5,4,5,4,5,4,5,6,5,6,5,6,5,6,5,6,7,6,7,6,7,6,7,6,7, %U A194513 8,7,8,7,8,7,8,7,8,9,8,9,8,9,8,9,8,9,10,9,10,9,10,9,10,9,10,11,10,11 %N A194513 Second coordinate of (2,7)-Lagrange pair for n. %C A194513 See A194508. %H A194513 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,1,-1). %F A194513 From _Chai Wah Wu_, Jan 21 2020: (Start) %F A194513 a(n) = a(n-1) + a(n-9) - a(n-10) for n > 10. %F A194513 G.f.: x*(x^8 - x^7 + x^6 - x^5 + x^4 + x^3 - x^2 + x - 1)/(x^10 - x^9 - x + 1). (End) %F A194513 a(n) = n - 2*floor((4*n + 6)/9). - _Ridouane Oudra_, Dec 28 2020 %e A194513 This table shows (x(n),y(n)) for 1<=n<=13: %e A194513 n...... 1..2..3..4..5..6..7..8..9..10..11..12..13 %e A194513 x(n)... 4..1..5..2.-1..3..0..4..1..5...2...6...3 %e A194513 y(n).. -1..0.-1..0..1..0..1..0..1..0...1...0...1 %t A194513 c = 2; d = 7; %t A194513 x1 = {4, 1, 5, 2, -1, 3, 0, 4, 1}; y1 = {-1, 0, -1, 0, 1, 0, 1, 0, 1}; %t A194513 x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1] %t A194513 y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1] %t A194513 Table[x[n], {n, 1, 100}] (* A194512 *) %t A194513 Table[y[n], {n, 1, 100}] (* A194513 *) %t A194513 Table[y[n], {n, 1, 100}] %t A194513 r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n] %t A194513 TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]] %Y A194513 Cf. A194508, A194512. %K A194513 sign %O A194513 1,14 %A A194513 _Clark Kimberling_, Aug 28 2011