A194514 First coordinate of (3,4)-Lagrange pair for n.
-1, 2, 1, 0, -1, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 5, 4, 3, 2, 5, 4, 3, 6, 5, 4, 3, 6, 5, 4, 7, 6, 5, 4, 7, 6, 5, 8, 7, 6, 5, 8, 7, 6, 9, 8, 7, 6, 9, 8, 7, 10, 9, 8, 7, 10, 9, 8, 11, 10, 9, 8, 11, 10, 9, 12, 11, 10, 9, 12, 11, 10, 13, 12, 11, 10, 13, 12, 11, 14, 13, 12, 11, 14, 13
Offset: 1
Keywords
Examples
This table shows (x(n),y(n)) for 1<=n<=13: n...... 1..2..3..4..5..6..7..8..9..10..11..12..13 x(n)...-1..2..1..0.-1..2..1..0..3..2...1...0...3 y(n)... 1.-1..0..1..2..0..1..2..0..1...2...3...1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Programs
-
Mathematica
c = 3; d = 4; x1 = {-1, 2, 1, 0, -1, 2, 1}; y1 = {1, -1, 0, 1, 2, 0, 1}; x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1] y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1] Table[x[n], {n, 1, 100}] (* A194514 *) Table[y[n], {n, 1, 100}] (* A194515 *) r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n] TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
Formula
From Chai Wah Wu, Jan 21 2020: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
G.f.: x*(-x^6 + 3*x^5 - x^4 - x^3 - x^2 + 3*x - 1)/(x^8 - x^7 - x + 1). (End)
a(n) = 3*n - 4*floor((5*n + 3)/7). - Ridouane Oudra, Dec 28 2020
Comments