A194522 First coordinate of (4,5)-Lagrange pair for n.
-1, -2, 2, 1, 0, -1, 3, 2, 1, 0, -1, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 6, 5, 4, 3, 2, 6, 5, 4, 3, 7, 6, 5, 4, 3, 7, 6, 5, 4, 8, 7, 6, 5, 4, 8, 7, 6, 5, 9, 8, 7, 6, 5, 9, 8, 7, 6, 10, 9, 8, 7, 6, 10, 9, 8, 7, 11, 10, 9, 8, 7, 11, 10, 9, 8, 12, 11, 10, 9, 8, 12, 11, 10, 9
Offset: 1
Keywords
Examples
This table shows (x(n),y(n)) for 1<=n<=13: n...... 1..2..3..4..5..6..7..8..9..10..11..12..13 x(n).. -1.-2..2..1..0.-1..3..2..1..0..-1...3...2 y(n)... 1..2..1..0..1..2.-1..0..1..2...3...2...1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,-1).
Programs
-
Mathematica
Remove["Global`*"]; c = 4; d = 5; x1 = {-1, -2, 2, 1, 0, -1, 3, 2, 1}; y1 = {1, 2, 1, 0, 1, 2, -1, 0, 1}; x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1] y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1] Table[x[n], {n, 1, 100}] (* A194522 *) Table[y[n], {n, 1, 100}] (* A194523 *) r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n] TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
Formula
From Chai Wah Wu, Jan 21 2020: (Start)
a(n) = a(n-1) + a(n-9) - a(n-10) for n > 10.
G.f.: x*(-x^8 - x^7 + 4*x^6 - x^5 - x^4 - x^3 + 4*x^2 - x - 1)/(x^10 - x^9 - x + 1). (End)
a(n) = 4*n - 5*floor((7*n + 4)/9). - Ridouane Oudra, Dec 29 2020
Comments