This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194524 #16 Dec 29 2020 10:21:23 %S A194524 2,4,-1,1,3,-2,0,2,4,-1,1,3,5,0,2,4,-1,1,3,5,0,2,4,6,1,3,5,0,2,4,6,1, %T A194524 3,5,7,2,4,6,1,3,5,7,2,4,6,8,3,5,7,2,4,6,8,3,5,7,9,4,6,8,3,5,7,9,4,6, %U A194524 8,10,5,7,9,4,6,8,10,5,7,9,11,6,8,10,5,7,9,11,6,8,10,12,7,9,11,6,8 %N A194524 First coordinate of (4,7)-Lagrange pair for n. %C A194524 See A194508. %H A194524 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,1,-1). %F A194524 From _Chai Wah Wu_, Jan 21 2020: (Start) %F A194524 a(n) = a(n-1) + a(n-11) - a(n-12) for n > 12. %F A194524 G.f.: x*(2*x^10 - 5*x^9 + 2*x^8 + 2*x^7 + 2*x^6 - 5*x^5 + 2*x^4 + 2*x^3 - 5*x^2 + 2*x + 2)/(x^12 - x^11 - x + 1). (End) %F A194524 a(n) = 2*n - 7*floor((3*n + 4)/11). - _Ridouane Oudra_, Dec 29 2020 %e A194524 This table shows (x(n),y(n)) for 1<=n<=13: %e A194524 n..... 1..2..3..4..5..6..7..8..9..10..11..12..13 %e A194524 x(n).. 2..4.-1..1..3.-2..0..2..4.-1...1...3...5 %e A194524 y(n). -1.-2..1..0.-1..2..1..0.-1..2...1...0..-1 %t A194524 c = 4; d = 7; %t A194524 x1 = {2, 4, -1, 1, 3, -2, 0, 2, 4, -1, 1}; %t A194524 y1 = {-1, -2, 1, 0, -1, 2, 1, 0, -1, 2, 1}; %t A194524 x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1] %t A194524 y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1] %t A194524 Table[x[n], {n, 1, 100}] (* A194524 *) %t A194524 Table[y[n], {n, 1, 100}] (* A194525 *) %t A194524 r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n] %t A194524 TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]] %Y A194524 Cf. A194508, A194525. %K A194524 sign %O A194524 1,1 %A A194524 _Clark Kimberling_, Aug 28 2011