This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194530 #25 Aug 23 2023 08:43:52 %S A194530 0,1,3,9,32,132,623,3314,19628,128126,914005,7074517,59050739, %T A194530 528741491,5055414317,51406084221,553946196892,6305737560455, %U A194530 75610546284387,952559077043183,12579235034203780,173759983171005721,2505751777457313815,37657189917162605826 %N A194530 Number of unlabeled rigid interval posets with n non-maximal and 2 maximal elements. %H A194530 Alois P. Heinz, <a href="/A194530/b194530.txt">Table of n, a(n) for n = 0..200</a> %H A194530 Soheir Mohamed Khamis, <a href="http://dx.doi.org/10.1007/s11083-011-9213-5">Exact Counting of Unlabeled Rigid Interval Posets Regarding or Disregarding Height</a>, Order (journal) (2011). %F A194530 a(n) = [ y^n z^2 ] W(y,z); W(y,z) = z + z*(W(y,y+z+yz) - W(y,z)). %F A194530 From _Peter Bala_, Aug 21 2023: (Start) %F A194530 Conjectural g.f.: %F A194530 1) A(x) = Sum_{n >= 0} n*(Product_{i = 1..n} 1 - 1/(1+x)^i). %F A194530 2) A(x) = (1/2)*Sum_{n >= 0} n*(n+1)/(1+x)^(n+1) * (Product_{i = 1..n} 1 - 1/(1+x)^i). Cf. A138265. (End) %p A194530 w:= proc(t) option remember; %p A194530 `if`(t=0, 1, expand(convert(series(series(z +z*(subs( %p A194530 z=z+y+y*z, w(t-1)) -w(t-1)), z, t+1), y, t+1), polynom))) %p A194530 end: %p A194530 a:= n-> coeff(coeff(w(2+n), z, 2), y, n): %p A194530 seq(a(n), n=0..50); %t A194530 w[t_] := w[t] = If[t == 0, 1, Expand[Normal[Series[Series[z+z*((w[t-1] /. z -> z+y+y*z)-w[t-1]), {z, 0, t+1}], {y, 0, t+1}]]]]; a[n_] := a[n] = Coefficient[Coefficient[w[2+n], z, 2], y, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 50}] (* _Jean-François Alcover_, Mar 05 2014, after _Alois P. Heinz_ *) %Y A194530 2nd column of A193344, Column k=2 of A218757. %Y A194530 Cf. A138265. %K A194530 nonn %O A194530 0,3 %A A194530 _Alois P. Heinz_, Aug 28 2011