cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194533 Jordan function ratio J_8(n)/J_2(n).

Original entry on oeis.org

1, 85, 820, 5440, 16276, 69700, 120100, 348160, 597780, 1383460, 1786324, 4460800, 4855540, 10208500, 13346320, 22282240, 24221380, 50811300, 47176564, 88541440, 98482000, 151837540, 148316260, 285491200, 254312500, 412720900, 435781620, 653344000, 595531444
Offset: 1

Views

Author

R. J. Mathar, Aug 28 2011

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(6*(e - 1))*(p^2 + 1)*(p^4 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 01 2022 *)

Formula

a(n) = A069093(n)/A007434(n) = A065960(n) * A065958(n).
Multiplicative with a(p^e) = p^(6*(e-1))*(p^2+1)*(p^4+1), e>0.
Dirichlet g.f.: zeta(s-6)*Product_{primes p} (1+p^(4-s)+p^(2-s)+p^(-s)).
Dirichlet convolution of A001014 with the multiplicative sequence 1, 21, 91, 0, 651, 1911, 2451, 0, 0, 13671, 14763, 0, 28731, 51471...
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = Product_{primes p} (1 + 1/p^3 + 1/p^5 + 1/p^7) = 1.22847463998021088097249049512949441921891884186337179613337753... - Vaclav Kotesovec, Dec 18 2019