cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194544 Total sum of repeated parts in all partitions of n.

This page as a plain text file.
%I A194544 #31 Jan 24 2019 16:23:04
%S A194544 0,0,2,3,10,14,33,46,87,125,208,291,461,633,942,1292,1851,2491,3484,
%T A194544 4629,6321,8326,11143,14513,19168,24720,32185,41193,53030,67297,85830,
%U A194544 108116,136651,171040,214462,266731,332197,410730,508201,625082,768920,940938
%N A194544 Total sum of repeated parts in all partitions of n.
%H A194544 Alois P. Heinz, <a href="/A194544/b194544.txt">Table of n, a(n) for n = 0..1000</a>
%F A194544 a(n) = A066186(n) - A103628(n), n >= 1.
%F A194544 a(n) ~ exp(sqrt(2*n/3)*Pi) * (1/(4*sqrt(3))-3*sqrt(3)/(8*Pi^2)) * (1 - Pi*(135+2*Pi^2)/(24*(2*Pi^2-9)*sqrt(6*n))). - _Vaclav Kotesovec_, Nov 05 2016
%e A194544 For n = 6 we have:
%e A194544 --------------------------------------
%e A194544 .                          Sum of
%e A194544 Partitions             repeated parts
%e A194544 --------------------------------------
%e A194544 6 .......................... 0
%e A194544 3 + 3 ...................... 6
%e A194544 4 + 2 ...................... 0
%e A194544 2 + 2 + 2 .................. 6
%e A194544 5 + 1 ...................... 0
%e A194544 3 + 2 + 1 .................. 0
%e A194544 4 + 1 + 1 .................. 2
%e A194544 2 + 2 + 1 + 1 .............. 6
%e A194544 3 + 1 + 1 + 1 .............. 3
%e A194544 2 + 1 + 1 + 1 + 1 .......... 4
%e A194544 1 + 1 + 1 + 1 + 1 + 1 ...... 6
%e A194544 --------------------------------------
%e A194544 Total ..................... 33
%e A194544 So a(6) = 33.
%p A194544 b:= proc(n, i) option remember; local h, j, t;
%p A194544       if n<0 then [0, 0]
%p A194544     elif n=0 then [1, 0]
%p A194544     elif i<1 then [0, 0]
%p A194544     else h:= [0, 0];
%p A194544          for j from 0 to iquo(n, i) do
%p A194544            t:= b(n-i*j, i-1);
%p A194544            h:= [h[1]+t[1], h[2]+t[2]+`if`(j<2, 0, t[1]*i*j)]
%p A194544          od; h
%p A194544       fi
%p A194544     end:
%p A194544 a:= n-> b(n, n)[2]:
%p A194544 seq(a(n), n=0..50); # _Alois P. Heinz_, Nov 20 2011
%t A194544 b[n_, i_] := b[n, i] = Module[{h, j, t}, Which [n<0, {0, 0}, n==0, {1, 0}, i<1, {0, 0}, True, h = {0, 0}; For[j=0, j <= Quotient[n, i], j++, t = b[n - i*j, i-1]; h = {h[[1]] + t[[1]], h[[2]] + t[[2]] + If[j<2, 0, t[[1]]* i*j]}]; h]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Jan 15 2016, after _Alois P. Heinz_ *)
%t A194544 Table[Total[Flatten[Select[Flatten[Split/@IntegerPartitions[n],1], Length[ #]> 1&]]],{n,0,50}] (* _Harvey P. Dale_, Jan 24 2019 *)
%Y A194544 Cf. A066186, A103628, A135010, A138121, A194452.
%K A194544 nonn
%O A194544 0,3
%A A194544 _Omar E. Pol_, Nov 19 2011
%E A194544 More terms from _Alois P. Heinz_, Nov 20 2011