This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194545 #15 Nov 03 2015 03:18:46 %S A194545 0,1,2,4,11,16,33,48,89,134,214,305,478,663,976,1356,1934,2617,3654, %T A194545 4877,6652,8808,11772,15386,20329,26308,34249,43987,56651,72079,92008, %U A194545 116171,146967,184381,231399,288398,359581,445426,551721,679868,837238,1026256 %N A194545 Total sum of nonprime parts in all partitions of n. %H A194545 Alois P. Heinz, <a href="/A194545/b194545.txt">Table of n, a(n) for n = 0..1000</a> %F A194545 a(n) = A066186(n) - A073118(n). %e A194545 For n = 6 we have: %e A194545 -------------------------------------- %e A194545 . Sum of %e A194545 Partitions nonprime parts %e A194545 -------------------------------------- %e A194545 6 .......................... 6 %e A194545 3 + 3 ...................... 0 %e A194545 4 + 2 ...................... 4 %e A194545 2 + 2 + 2 .................. 0 %e A194545 5 + 1 ...................... 1 %e A194545 3 + 2 + 1 .................. 1 %e A194545 4 + 1 + 1 .................. 6 %e A194545 2 + 2 + 1 + 1 .............. 2 %e A194545 3 + 1 + 1 + 1 .............. 3 %e A194545 2 + 1 + 1 + 1 + 1 .......... 4 %e A194545 1 + 1 + 1 + 1 + 1 + 1 ...... 6 %e A194545 -------------------------------------- %e A194545 Total ..................... 33 %e A194545 So a(6) = 33. %p A194545 b:= proc(n, i) option remember; local h, j, t; %p A194545 if n<0 then [0, 0] %p A194545 elif n=0 then [1, 0] %p A194545 elif i<1 then [0, 0] %p A194545 else h:= [0, 0]; %p A194545 for j from 0 to iquo(n, i) do %p A194545 t:= b(n-i*j, i-1); %p A194545 h:= [h[1]+t[1], h[2]+t[2]+`if`(isprime(i), 0, t[1]*i*j)] %p A194545 od; h %p A194545 fi %p A194545 end: %p A194545 a:= n-> b(n, n)[2]: %p A194545 seq(a(n), n=0..50); # _Alois P. Heinz_, Nov 20 2011 %t A194545 b[n_, i_] := b[n, i] = Module[{h, j, t}, Which[n<0, {0, 0}, n==0, {1, 0}, i < 1, {0, 0}, True, h = {0, 0}; For[j = 0, j <= Quotient[n, i], j++, t = b[n-i*j, i-1]; h = {h[[1]] + t[[1]], h[[2]] + t[[2]] + If[PrimeQ[i], 0, t[[1]]*i*j]}]; h]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Nov 03 2015, after _Alois P. Heinz_ *) %Y A194545 Cf. A018252, A066186, A073118, A194544. %K A194545 nonn %O A194545 0,3 %A A194545 _Omar E. Pol_, Nov 20 2011 %E A194545 More terms from _Alois P. Heinz_, Nov 20 2011