This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194546 #38 Sep 22 2023 08:58:20 %S A194546 1,1,2,1,2,3,1,2,3,2,4,1,2,3,2,4,3,5,1,2,3,2,4,3,5,2,4,3,6,1,2,3,2,4, %T A194546 3,5,2,4,3,6,3,5,4,7,1,2,3,2,4,3,5,2,4,3,6,3,5,4,7,2,4,3,6,5,4,8,1,2, %U A194546 3,2,4,3,5,2,4,3,6,3,5,4,7,2,4,3,6,5,4,8,3,5,4,7,3,6,5,9 %N A194546 Triangle read by rows: T(n,k) is the largest part of the k-th partition of n, with partitions in colexicographic order. %C A194546 Row n lists the first A000041(n) terms of A141285. %C A194546 The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is co-lexicographic, see example. - _Joerg Arndt_, Sep 13 2013 %H A194546 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A194546 a(n) = A061395(A334437(n)). - _Gus Wiseman_, May 31 2020 %e A194546 For n = 5 the partitions of 5 in colexicographic order are: %e A194546 1+1+1+1+1 %e A194546 2+1+1+1 %e A194546 3+1+1 %e A194546 2+2+1 %e A194546 4+1 %e A194546 3+2 %e A194546 5 %e A194546 so the fifth row is the largest in each partition: 1,2,3,2,4,3,5 %e A194546 Triangle begins: %e A194546 1; %e A194546 1,2; %e A194546 1,2,3; %e A194546 1,2,3,2,4; %e A194546 1,2,3,2,4,3,5; %e A194546 1,2,3,2,4,3,5,2,4,3,6; %e A194546 1,2,3,2,4,3,5,2,4,3,6,3,5,4,7; %e A194546 1,2,3,2,4,3,5,2,4,3,6,3,5,4,7,2,4,3,6,5,4,8; %e A194546 ... %t A194546 colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]]; %t A194546 Max/@Join@@Table[Sort[IntegerPartitions[n],colex],{n,8}] (* _Gus Wiseman_, May 31 2020 *) %Y A194546 The sum of row n is A006128(n). %Y A194546 Cf. A135010, A138121, A141285, A194547, A194548, A194549. %Y A194546 Row lengths are A000041. %Y A194546 Let y be the n-th integer partition in colexicographic order (A211992): %Y A194546 - The maximum of y is a(n). %Y A194546 - The length of y is A193173(n). %Y A194546 - The minimum of y is A196931(n). %Y A194546 - The Heinz number of y is A334437(n). %Y A194546 Lexicographically ordered reversed partitions are A026791. %Y A194546 Reverse-colexicographically ordered partitions are A026792. %Y A194546 Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036. %Y A194546 Reverse-lexicographically ordered partitions are A080577. %Y A194546 Lexicographically ordered partitions are A193073. %Y A194546 Cf. A036037, A063008, A115623, A228100, A228531, A238966, A334301. %K A194546 nonn,tabf %O A194546 1,3 %A A194546 _Omar E. Pol_, Dec 10 2011 %E A194546 Definition corrected by _Omar E. Pol_, Sep 12 2013