This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194548 #31 Mar 05 2021 07:49:17 %S A194548 0,1,1,2,1,2,1,3,2,2,1,3,2,2,1,4,3,3,2,2,2,1,4,3,3,2,3,2,2,1,5,4,4,3, %T A194548 3,3,2,3,2,2,2,1,5,4,4,3,4,3,3,2,3,3,2,2,2,1,6,5,5,4,4,4,3,4,3,3,3,2, %U A194548 4,3,3,2,3,2,2,2,1,6,5,5,4,5,4,4,3,4,4,3,3,3,2,4,3,3,3,2,3,2,2,2,1 %N A194548 Triangle read by rows: T(n,k) = number of parts in the k-th partition of n that does not contain 1 as a part, with partitions in lexicographic order. %H A194548 Alois P. Heinz, <a href="/A194548/b194548.txt">Rows n = 1..33, flattened</a> %H A194548 Tilman Piesk, <a href="/A194602/a194602.txt">Table</a> for A194602, showing the non-one addends. %e A194548 Written as a triangle: %e A194548 0; %e A194548 1; %e A194548 1; %e A194548 2,1; %e A194548 2,1; %e A194548 3,2,2,1; %e A194548 3,2,2,1; %e A194548 4,3,3,2,2,2,1; %e A194548 4,3,3,2,3,2,2,1; %e A194548 5,4,4,3,3,3,2,3,2,2,2,1; %e A194548 5,4,4,3,4,3,3,2,3,3,2,2,2,1; %e A194548 6,5,5,4,4,4,3,4,3,3,3,2,4,3,3,2,3,2,2,2,1; %e A194548 6,5,5,4,5,4,4,3,4,4,3,3,3,2,4,3,3,3,2,3,2,2,2,1; %p A194548 T:= proc(n) local b, l; %p A194548 b:= proc(n, i, t) %p A194548 if n=0 then l:=l, t %p A194548 elif i>n then %p A194548 else b(n-i, i, t+1); b(n, i+1, t) %p A194548 fi %p A194548 end; %p A194548 if n<2 then 0 else l:= NULL; b(n, 2, 0); l fi %p A194548 end: %p A194548 seq(T(n), n=1..15); # _Alois P. Heinz_, Dec 19 2011 %t A194548 T[n_] := Module[{b, l}, b[n0_, i_, t_] := %t A194548 If[n0==0, l = Append[l, t], %t A194548 If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]]; %t A194548 If[n<2, {0}, l = {}; b[n, 2, 0]; l]]; %t A194548 Table[T[n], {n, 1, 15}] // Flatten (* _Jean-François Alcover_, Mar 05 2021, after _Alois P. Heinz_ *) %Y A194548 Row sums give A138135. Row n has length A187219(n). %Y A194548 Cf. A002865, A135010, A138121, A193173, A194546, A194547, A194549. %K A194548 nonn,tabf %O A194548 1,4 %A A194548 _Omar E. Pol_, Dec 11 2011 %E A194548 More terms from _Alois P. Heinz_, Dec 19 2011