This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194549 #25 Mar 05 2021 07:41:37 %S A194549 1,1,2,0,3,1,4,-1,2,1,5,0,3,2,6,-2,1,0,4,3,2,7,-1,2,1,5,0,4,3,8,-3,0, %T A194549 -1,3,2,1,6,1,5,4,3,9,-2,1,0,4,-1,3,2,7,2,1,6,5,4,10,-4,-1,-2,2,1,0,5, %U A194549 0,4,3,2,8,-1,3,2,7,1,6,5,4,11,-3,0,-1,3,-2 %N A194549 Triangle read by rows: T(n,k) = Dyson's rank of the k-th partition of n that does not contain 1 as a part, with partitions in lexicographic order. %H A194549 Alois P. Heinz, <a href="/A194549/b194549.txt">Rows n = 1..33, flattened</a> %F A194549 a(n) = A141285(n) - A194548(n). %e A194549 Written as a triangle: %e A194549 1; %e A194549 1; %e A194549 2; %e A194549 0,3; %e A194549 1,4; %e A194549 -1,2,1,5; %e A194549 0,3,2,6; %e A194549 -2,1,0,4,3,2,7; %e A194549 -1,2,1,5,0,4,3,8; %e A194549 -3,0,-1,3,2,1,6,1,5,4,3,9; %e A194549 -2,1,0,4,-1,3,2,7,2,1,6,5,4,10; %e A194549 -4,-1,-2,2,1,0,5,0,4,3,2,8,-1,3,2,7,1,6,5,4,11; %p A194549 T:= proc(n) local b, l; %p A194549 b:= proc(n, i, t) %p A194549 if n=0 then l:=l, i-t %p A194549 elif i>n then %p A194549 else b(n-i, i, t+1); b(n, i+1, t) %p A194549 fi %p A194549 end; %p A194549 if n<2 then 1 else l:= NULL; b(n, 2, 0); l fi %p A194549 end: %p A194549 seq(T(n), n=1..13); # _Alois P. Heinz_, Dec 20 2011 %t A194549 T[n_] := Module[{b, l}, b[n0_, i_, t_] := %t A194549 If[n0 == 0, l = Append[l, i-t], %t A194549 If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]]; %t A194549 If[n<2, {1}, l = {}; b[n, 2, 0]; l]]; %t A194549 Table[T[n], {n, 1, 13}] // Flatten (* _Jean-François Alcover_, Mar 05 2021, after _Alois P. Heinz_ *) %Y A194549 The sum of row n is A000041(n-1). Row n has length A187219(n). %Y A194549 Cf. A002865, A135010, A138121, A194546, A194547, A194548. %K A194549 sign,tabf,look %O A194549 1,3 %A A194549 _Omar E. Pol_, Dec 11 2011 %E A194549 More terms from _Alois P. Heinz_, Dec 20 2011