cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194551 a(n) is the n-th largest part that are visible in one of the three views of the version "Tree" of the section model of partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 6, 4, 7, 5, 4, 8, 3, 6, 5, 9, 4, 7, 6, 5, 10, 5, 4, 8, 7, 6, 11, 3, 6, 5, 9, 4, 8, 7, 6, 12, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2011

Keywords

Comments

It appears that if this is written as a triangle (see example) and n >= 3 then row n has the following property:
If n is congruent to 0 (mod 3) then row n converge to the sequence 3,6,5,9,4,8,7,6,12... in which the records are the numbers >= 3 that are congruent to 0 (mod 3).
If n is congruent to 1 (mod 3) then row n converge to the sequence 4,7,6,5,10,5,9,8,7,13... in which the records are the numbers >= 4 that are congruent to 1 (mod 3).
If n is congruent to 2 (mod 3) then row n converge to the sequence 5,4,8,7,6,11,6,5,10,9,8,7,14... in which the records are the numbers >= 5 that are congruent to 2 (mod 3).
For more information see A135010.

Examples

			Written as a triangle begins:
1;
2;
3;
4;
5;
3,6;
4,7;
5,4,8;
3,6,5,9;
4,7,6,5,10;
5,4,8,7,6,11;
3,6,5,9,4,8,7,6,12;
4,7,6,5,10,5,9,8,7,13;
5,4,8,7,6,11,6,5,10,9,8,7,14;
...
Row n has length A008483(n), if n >= 3.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Drop[l = Last/@DeleteCases[Sort@PadRight[Reverse /@ Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], First@FirstPosition[l, n - 2, {0}]], {n, 2, 15}]] // Flatten  (* Robert Price, May 15 2020 *)