This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194555 #38 Dec 15 2024 12:10:50 %S A194555 2,1,9,2,0,4,8,9,4,9,0,0,8,7,6,1,3,2,8,9,0,7,6,7,9,4,9,7,4,4,6,5,7,2, %T A194555 6,5,8,7,3,6,9,2,6,4,6,1,1,9,0,7,9,6,3,9,2,6,4,8,5,0,9,2,1,7,3,8,9,3, %U A194555 1,7,0,7,6,5,2,1,9,9,7,4,7,2,2,3,5,3,0,1,9,5,4,0,6,1,5,3,4,6,1,0 %N A194555 Decimal expansion of the real part of i^(e^Pi), where i = sqrt(-1). %C A194555 If Schanuel's Conjecture is true, then i^e^Pi is transcendental (see Marques and Sondow 2010, p. 79). %H A194555 G. C. Greubel, <a href="/A194555/b194555.txt">Table of n, a(n) for n = 0..10000</a> %H A194555 Steven Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, Jun 23 2012, Section 1.1 %H A194555 D. Marques and Jonathan Sondow, <a href="http://arxiv.org/abs/1010.6216">Schanuel's conjecture and algebraic powers z^w and w^z with z and w transcendental</a>, arXiv:1010.6216 [math.NT], 2010-2011; East-West J. Math., 12 (2010), 75-84. %H A194555 Wikipedia, <a href="http://en.wikipedia.org/wiki/Schanuel's_conjecture">Schanuel's conjecture</a> %e A194555 i^e^Pi = 0.2192048949... - 0.9756788478...*i %t A194555 RealDigits[ Re[I^E^Pi], 10, 100] // First %o A194555 (PARI) real(I^(exp(Pi))) \\ _Michel Marcus_, Aug 19 2018 %Y A194555 Cf. A039661 (e^Pi), A194554 (imaginary part). %Y A194555 Cf. A194348 (sqrt(2)^(sqrt(2)^sqrt(2))). %K A194555 nonn,cons %O A194555 0,1 %A A194555 _Jonathan Sondow_, Aug 28 2011