This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194565 #21 Feb 16 2025 08:33:15 %S A194565 122,123,127,130,138,143,155,162,163,164,170,173,178,185,187,190,204, %T A194565 205,207,208,213,215,216,218,232,237,239,242,244,245,246,248,249,251, %U A194565 255,256,259,261,266,268,270,278,279,283,284,286,287,289,295,298,299,300 %N A194565 Numbers n such that n^2 + n + 41 is composite and n is not a lattice point on the parabolas p1 = x^2 + 40 or p2 = (x^2+x)/2 + 81. %C A194565 The parabola curve fit: p1(0)=40; p1(1)=41; p1(2)=44 yields p1(x)=x^2+40. A second fit: p2(0)=81; p2(1)=82; p2(2)=84 yields p2(x)=(x^2+x)/2 + 81. %C A194565 Substituting n=x^2+40 into g=n^2+n+41 is factorable as: g1=(x^2+x+41)*(x^2-x+41). This shows that all lattice points on p1 produce a composite g. %C A194565 Similarly, substituting n=(x^2-x)/2 + 81 into g factors as g2=(x^2+163)*(x^2+2*x+164)/4. So all lattice points on p2 produce a composite g. %D A194565 John Stillwell, Elements of Number Theory, Springer, 2003, page 3. %H A194565 Charles R Greathouse IV, <a href="/A194565/b194565.txt">Table of n, a(n) for n = 1..10000</a> %H A194565 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">MathWorld: Prime-Generating Polynomial</a>. %F A194565 a(n) ~ n. - _Charles R Greathouse IV_, Apr 25 2014 %p A194565 AV:=Vector(1000,0): %p A194565 counter:=1: %p A194565 for n from 1 to 1000 do %p A194565 g:=n^2+n+41: %p A194565 if isprime(g)=false then %p A194565 AV[counter]:=n: %p A194565 counter:=counter+1: %p A194565 end if %p A194565 end do: %p A194565 A007634:=convert(AV,set): %p A194565 pv1:=Vector(1000,j->(j-1)^2+40): %p A194565 p1:=convert(pv1,set): %p A194565 A055390:=A007634 minus p1: %p A194565 pv2:=Vector(1000,j->((j-1)^2+(j-1))/2+81): %p A194565 p2:=convert(pv2,set): %p A194565 ThisSet:=A055390 minus p2 minus {0}; %o A194565 (PARI) is(n)=!isprime(n^2+n+41) && !issquare(n-40) && !issquare(8*n-647) \\ _Charles R Greathouse IV_, Apr 25 2014 %Y A194565 Cf. A007634 (n such that n^2+n+41 is composite). %Y A194565 Cf. A055390 (members of A007634 that are not lattice points of x^2+40). %K A194565 nonn,easy %O A194565 1,1 %A A194565 _Matt C. Anderson_, Aug 28 2011 %E A194565 Fixed subscript in first comment by Matt C. Anderson