cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059757 Initial terms of smallest Erdős-Woods intervals corresponding to the terms of A059756.

Original entry on oeis.org

2184, 3521210, 47563752566, 12913165320, 21653939146794, 172481165966593120, 808852298577787631376, 91307018384081053554, 1172783000213391981960, 26214699169906862478864, 27070317575988954996883440, 92274830076590427944007586984, 3061406404565905778785058155412
Offset: 1

Views

Author

Nik Lygeros (webmaster(AT)lygeros.org), Feb 12 2001

Keywords

Comments

The term a(1)=2184 is the start of the lowest interval with an Erdős-Woods interval length of 16 = A059756(1), and the list of others of that length 16 appear to be the same as A194585. - R. J. Mathar, Jul 02 2014

Examples

			For the Erdős-Woods number 16, no number between 2184 and 2184+16 is coprime to both 2184 and 2184+16. 2184 is the smallest such nonnegative integer.
		

Crossrefs

Extensions

a(5)-a(13) corrected by Peter Kagey, Jul 01 2021, based on the Code Golf Stack Exchange link.

A244620 Initial terms of Erdős-Wood intervals of length 22.

Original entry on oeis.org

3521210, 6178458, 13220900, 15878148, 22920590, 25577838, 32620280, 35277528, 42319970, 44977218, 52019660, 54676908, 61719350, 64376598, 71419040, 74076288, 81118730, 83775978, 90818420, 93475668, 100518110, 103175358, 110217800, 112875048, 119917490
Offset: 1

Views

Author

R. J. Mathar, Jul 02 2014

Keywords

Comments

By definition of the intervals in A059756, these are numbers that start a sequence of 23 consecutive integers such that none of the 23 integers is coprime to the first and also coprime to the last integer of the interval.
Hence each initial term of an Erdős-Wood interval is the initial term of a stapled interval of length A059756(n) + 1 (see definition in A090318). - Christopher Hunt Gribble, Dec 02 2014

Examples

			3521210 = 2*5*7*11*17*269 and 3521210+22 = 3521232 = 2^4 * 3^4 * 11 * 13 * 19, and all numbers in [3521210,3521232] have at least one prime factor in {2, 3, 5, 7, 11, 13, 17, 19, 269}. Therefore 3521210 is in the list.
		

Crossrefs

Programs

  • Maple
    isEWood := proc(n,ewlength)
        local nend,fsn,fsne,fsall,fsk ;
        nend := n+ewlength ;
        fsn := numtheory[factorset](n) ;
        fsne := numtheory[factorset](nend) ;
        fsall := fsn union fsne ;
        for k from n to nend do
            fsk := numtheory[factorset](k) ;
            if fsk intersect fsall = {} then
                return false;
            end if;
        end do:
        return true;
    end proc:
    for n from 2 do
        if isEWood(n,22) then
            print(n) ;
        end if;
    end do:

Formula

a(1) = A059757(2).
From Christopher Hunt Gribble, Dec 02 2014: (Start)
a(1) = A130173(524).
a(2*n+1) = 3521210 + 9699690*n.
a(2*n+2) = 6178458 + 9699690*n.
a(n) = (-4849867 - 2192597*(-1)^n + 9699690*n)/2.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: (3521232*x^2+2657248*x+3521210) / ((x-1)^2*(x+1)). (End)

Extensions

More terms from Christopher Hunt Gribble, Dec 03 2014
Showing 1-2 of 2 results.