A194586 Triangle read by rows, T(n,k) the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*(k mod 2)*q^k.
0, 0, 1, 0, 2, 0, 0, 3, 0, 6, 0, 4, 0, 24, 0, 0, 5, 0, 60, 0, 30, 0, 6, 0, 120, 0, 180, 0, 0, 7, 0, 210, 0, 630, 0, 140, 0, 8, 0, 336, 0, 1680, 0, 1120, 0, 0, 9, 0, 504, 0, 3780, 0, 5040, 0, 630, 0, 10, 0, 720, 0, 7560, 0, 16800, 0, 6300, 0, 0, 11, 0, 990, 0, 13860, 0, 46200, 0, 34650, 0, 2772, 0, 12
Offset: 0
Examples
0 0, 1 0, 2, 0 0, 3, 0, 6 0, 4, 0, 24, 0 0, 5, 0, 60, 0, 30 0, 6, 0, 120, 0, 180, 0 0, 7, 0, 210, 0, 630, 0, 140 0 q 2 q 3 q + 6 q^3 4 q + 24 q^3 5 q + 60 q^3 + 30 q^5 6 q + 120 q^3 + 180 q^5 7 q + 210 q^3 + 630 q^5 + 140 q^7
Links
- Peter Luschny, The lost Catalan numbers.
Programs
-
Maple
A194586 := proc(n,k) local j, swing; swing := n -> n!/iquo(n,2)!^2: add(binomial(n,j)*swing(j)*q^j*(j mod 2),j=0..n); coeff(%,q,k) end: seq(print(seq(A194586(n,k),k=0..n)),n=0..8);
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; row[n_] := Sum[Binomial[n, j] sf[j] q^j Mod[j, 2], {j, 0, n}] // CoefficientList[#, q]& // PadRight[#, n+1]&; Table[row[n], {n, 0, 12}] (* Jean-François Alcover, Jun 26 2019 *)
Formula
egf(x,y) = x*y*exp(x)*BesselI(0,2*x*y).
Comments