A194587 A triangle whose rows add up to the numerators of the Bernoulli numbers (with B(1) = 1/2). T(n, k) for n >= 0, 0 <= k <= n.
1, 0, 1, 0, -3, 4, 0, 1, -4, 3, 0, -15, 140, -270, 144, 0, 1, -20, 75, -96, 40, 0, -21, 868, -5670, 13104, -12600, 4320, 0, 1, -84, 903, -3360, 5600, -4320, 1260, 0, -15, 2540, -43470, 244944, -630000, 820800, -529200, 134400, 0, 1, -340, 9075, -74592, 278040, -544320, 582120, -322560, 72576
Offset: 0
Examples
[0] 1; [1] 0, 1; [2] 0, -3, 4; [3] 0, 1, -4, 3; [4] 0, -15, 140, -270, 144; [5] 0, 1, -20, 75, -96, 40; [6] 0, -21, 868, -5670, 13104, -12600, 4320; [7] 0, 1, -84, 903, -3360, 5600, -4320, 1260;
Programs
-
Maple
A194587 := proc(n, k) local i; mul(i, i = select(isprime, map(i -> i + 1, numtheory[divisors](n)))): (-1)^(n-k)*Stirling2(n, k) * k! / (k + 1): %%*% end: seq(print(seq(A194587(n, k), k = 0..n)), n = 0..7);
-
Mathematica
T[n_, k_] := Times @@ Select[Divisors[n]+1, PrimeQ] (-1)^(n-k) StirlingS2[n, k]* k!/(k+1); Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 26 2019 *)
Formula
Extensions
Edited by Peter Luschny, Jun 26 2019
Edited and flipped signs in odd indexed rows by Peter Luschny, Aug 20 2022