cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194588 a(n) = A189912(n-1)-a(n-1) for n>0, a(0) = 1; extended Riordan numbers.

Original entry on oeis.org

1, 0, 2, 2, 8, 17, 49, 128, 356, 983, 2759, 7779, 22087, 63000, 180478, 518846, 1496236, 4326383, 12539335, 36419069, 105971473, 308866226, 901573732, 2635235789, 7712078755, 22594899002, 66266698424, 194531585078, 571561286576, 1680679630089, 4945738222801
Offset: 0

Views

Author

Peter Luschny, Aug 30 2011

Keywords

Crossrefs

Programs

  • Maple
    A189912 := n -> add(n!/((n-k)!*iquo(k,2)!^2 *(iquo(k,2)+1)),k=0..n):
    A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(n-1)!/((n-k-1)!*Quotient[k, 2]!^2*(1 + Quotient[k, 2])), {k, 0, n-1}] - a[n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 30 2013 *)

Formula

a(n) = ((n+1) mod 2) + (1/2)*sum_{k=1..n}((-1)^k*binomial(n,k)*((k+1)/2)^(k mod 2)*(k+1)$+2*(-1)^n*(2*k)$/(k+1)), where n$ denotes the swinging factorial A056040(n).