A194588 a(n) = A189912(n-1)-a(n-1) for n>0, a(0) = 1; extended Riordan numbers.
1, 0, 2, 2, 8, 17, 49, 128, 356, 983, 2759, 7779, 22087, 63000, 180478, 518846, 1496236, 4326383, 12539335, 36419069, 105971473, 308866226, 901573732, 2635235789, 7712078755, 22594899002, 66266698424, 194531585078, 571561286576, 1680679630089, 4945738222801
Offset: 0
Keywords
Links
- Peter Luschny, The lost Catalan numbers.
Programs
-
Maple
A189912 := n -> add(n!/((n-k)!*iquo(k,2)!^2 *(iquo(k,2)+1)),k=0..n): A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[(n-1)!/((n-k-1)!*Quotient[k, 2]!^2*(1 + Quotient[k, 2])), {k, 0, n-1}] - a[n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 30 2013 *)
Formula
a(n) = ((n+1) mod 2) + (1/2)*sum_{k=1..n}((-1)^k*binomial(n,k)*((k+1)/2)^(k mod 2)*(k+1)$+2*(-1)^n*(2*k)$/(k+1)), where n$ denotes the swinging factorial A056040(n).