cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194628 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

This page as a plain text file.
%I A194628 #35 Feb 15 2020 23:54:54
%S A194628 1,1,1,2,4,8,16,31,61,121,240,476,944,1872,3712,7362,14601,28958,
%T A194628 57432,113904,225904,448034,888583,1762321,3495200,6932008,13748208,
%U A194628 27266738,54077957,107252486,212713209,421872826,836697836,1659417786,3291113315,6527245245,12945446241,25674625681
%N A194628 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.
%C A194628 a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1), see example. - _Joerg Arndt_, Dec 18 2012
%C A194628 Row 4 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, and row 3 being A176503.
%H A194628 Alois P. Heinz, <a href="/A194628/b194628.txt">Table of n, a(n) for n = 1..1000</a>
%H A194628 Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
%F A194628 a(n) = A294775(n-1,4). - _Alois P. Heinz_, Nov 08 2017
%e A194628 From _Joerg Arndt_, Dec 18 2012: (Start)
%e A194628 There are a(6+1)=16 compositions 6=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1):
%e A194628 [ 1]  [ 1 1 1 1 1 1 ]
%e A194628 [ 2]  [ 1 1 1 1 2 ]
%e A194628 [ 3]  [ 1 1 1 2 1 ]
%e A194628 [ 4]  [ 1 1 1 3 ]
%e A194628 [ 5]  [ 1 1 2 1 1 ]
%e A194628 [ 6]  [ 1 1 2 2 ]
%e A194628 [ 7]  [ 1 1 3 1 ]
%e A194628 [ 8]  [ 1 1 4 ]
%e A194628 [ 9]  [ 1 2 1 1 1 ]
%e A194628 [10]  [ 1 2 1 2 ]
%e A194628 [11]  [ 1 2 2 1 ]
%e A194628 [12]  [ 1 2 3 ]
%e A194628 [13]  [ 1 3 1 1 ]
%e A194628 [14]  [ 1 3 2 ]
%e A194628 [15]  [ 1 4 1 ]
%e A194628 [16]  [ 1 5 ]
%e A194628 (End)
%t A194628 b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k (r - j), k], {j, 0, Min[n, r]}]]];
%t A194628 a[n_] := b[4n - 3, 1, 5];
%t A194628 Array[a, 40] (* _Jean-François Alcover_, Jul 21 2018, after _Alois P. Heinz_ *)
%o A194628 (PARI) /* see A002572, set t=5 */
%Y A194628 Cf. A002572, A176485, A176503, A294775.
%K A194628 nonn
%O A194628 1,4
%A A194628 _Jonathan Vos Post_, Aug 30 2011
%E A194628 Terms beyond a(20)=113904 added by _Joerg Arndt_, Dec 18 2012
%E A194628 Invalid empirical g.f. removed by _Alois P. Heinz_, Nov 08 2017