This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194628 #35 Feb 15 2020 23:54:54 %S A194628 1,1,1,2,4,8,16,31,61,121,240,476,944,1872,3712,7362,14601,28958, %T A194628 57432,113904,225904,448034,888583,1762321,3495200,6932008,13748208, %U A194628 27266738,54077957,107252486,212713209,421872826,836697836,1659417786,3291113315,6527245245,12945446241,25674625681 %N A194628 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions. %C A194628 a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1), see example. - _Joerg Arndt_, Dec 18 2012 %C A194628 Row 4 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, and row 3 being A176503. %H A194628 Alois P. Heinz, <a href="/A194628/b194628.txt">Table of n, a(n) for n = 1..1000</a> %H A194628 Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075. %F A194628 a(n) = A294775(n-1,4). - _Alois P. Heinz_, Nov 08 2017 %e A194628 From _Joerg Arndt_, Dec 18 2012: (Start) %e A194628 There are a(6+1)=16 compositions 6=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1): %e A194628 [ 1] [ 1 1 1 1 1 1 ] %e A194628 [ 2] [ 1 1 1 1 2 ] %e A194628 [ 3] [ 1 1 1 2 1 ] %e A194628 [ 4] [ 1 1 1 3 ] %e A194628 [ 5] [ 1 1 2 1 1 ] %e A194628 [ 6] [ 1 1 2 2 ] %e A194628 [ 7] [ 1 1 3 1 ] %e A194628 [ 8] [ 1 1 4 ] %e A194628 [ 9] [ 1 2 1 1 1 ] %e A194628 [10] [ 1 2 1 2 ] %e A194628 [11] [ 1 2 2 1 ] %e A194628 [12] [ 1 2 3 ] %e A194628 [13] [ 1 3 1 1 ] %e A194628 [14] [ 1 3 2 ] %e A194628 [15] [ 1 4 1 ] %e A194628 [16] [ 1 5 ] %e A194628 (End) %t A194628 b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k (r - j), k], {j, 0, Min[n, r]}]]]; %t A194628 a[n_] := b[4n - 3, 1, 5]; %t A194628 Array[a, 40] (* _Jean-François Alcover_, Jul 21 2018, after _Alois P. Heinz_ *) %o A194628 (PARI) /* see A002572, set t=5 */ %Y A194628 Cf. A002572, A176485, A176503, A294775. %K A194628 nonn %O A194628 1,4 %A A194628 _Jonathan Vos Post_, Aug 30 2011 %E A194628 Terms beyond a(20)=113904 added by _Joerg Arndt_, Dec 18 2012 %E A194628 Invalid empirical g.f. removed by _Alois P. Heinz_, Nov 08 2017