This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194630 #25 Feb 15 2020 23:56:14 %S A194630 1,1,1,2,4,8,16,32,64,127,253,505,1008,2012,4016,8016,16000,31936, %T A194630 63744,127234,253961,506910,1011800,2019568,4031088,8046112,16060160, %U A194630 32056322,63984903,127714833,254920736,508825640,1015623664,2027200176,4046322176,8076520194 %N A194630 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions. %C A194630 a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 7*p(k+1). - _Joerg Arndt_, Dec 18 2012 %C A194630 Row 6 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, and row 5 being A194629. %H A194630 Alois P. Heinz, <a href="/A194630/b194630.txt">Table of n, a(n) for n = 1..1000</a> %H A194630 Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075. %F A194630 a(n) = A294775(n-1,6). - _Alois P. Heinz_, Nov 08 2017 %t A194630 b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]]; %t A194630 a[n_] := b[6n-5, 1, 7]; %t A194630 Array[a, 40] (* _Jean-François Alcover_, Jul 21 2018, after _Alois P. Heinz_ *) %o A194630 (PARI) /* see A002572, set t=7 */ %Y A194630 Cf. A002572, A176485, A176503, A194628, A194629, A294775. %K A194630 nonn %O A194630 1,4 %A A194630 _Jonathan Vos Post_, Aug 30 2011 %E A194630 Terms beyond a(20)=127234 added by _Joerg Arndt_, Dec 18 2012