cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194632 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

This page as a plain text file.
%I A194632 #26 May 31 2021 17:09:36
%S A194632 1,1,1,2,4,8,16,32,64,128,256,511,1021,2041,4080,8156,16304,32592,
%T A194632 65152,130240,260352,520448,1040384,2079746,4157449,8310814,16613464,
%U A194632 33210608,66388592,132711968,265293568,530326528,1060132096,2119222786,4236363783,8468566033
%N A194632 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.
%C A194632 a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 9*p(k+1). - _Joerg Arndt_, Dec 18 2012
%C A194632 Row 8 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, row 6 being  A194630, and row 7 being A194631.
%H A194632 Alois P. Heinz, <a href="/A194632/b194632.txt">Table of n, a(n) for n = 1..1000</a>
%H A194632 Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, <a href="https://arxiv.org/abs/1108.5964">The number of Huffman codes, compact trees, and sums of unit fractions</a>, arXiv:1108.5964 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
%F A194632 a(n) = A294775(n-1,8). - _Alois P. Heinz_, Nov 08 2017
%t A194632 b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
%t A194632 a[n_] := b[8n-7, 1, 9];
%t A194632 Array[a, 40] (* _Jean-François Alcover_, Jul 21 2018, after _Alois P. Heinz_ *)
%o A194632 (PARI) /* see A002572, set t=9 */
%Y A194632 Cf. A002572, A176485, A176503, A194628, A194629, A194630, A194631, A294775.
%K A194632 nonn
%O A194632 1,4
%A A194632 _Jonathan Vos Post_, Aug 30 2011
%E A194632 Terms beyond a(20)=130240 added by _Joerg Arndt_, Dec 18 2012