cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194633 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

This page as a plain text file.
%I A194633 #31 May 31 2021 17:07:27
%S A194633 1,1,1,2,4,8,16,32,64,128,256,512,1023,2045,4089,8176,16348,32688,
%T A194633 65360,130688,261312,522496,1044736,2088960,4176896,8351746,16699401,
%U A194633 33390622,66764888,133497072,266928752,533726752,1067192064,2133861376,4266677504,8531265024
%N A194633 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.
%C A194633 a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 10*p(k+1).  [_Joerg Arndt_, Dec 18 2012]
%C A194633 Row 9 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, row 6 being  A194630, row 7 being A194631, and row 8 being A194632.
%H A194633 Alois P. Heinz, <a href="/A194633/b194633.txt">Table of n, a(n) for n = 1..1000</a>
%H A194633 Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, <a href="https://arxiv.org/abs/1108.5964">The number of Huffman codes, compact trees, and sums of unit fractions</a>, arXiv:1108.5964 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
%F A194633 a(n) = A294775(n-1,9).
%t A194633 b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
%t A194633 a[n_] := b[9n-8, 1, 10];
%t A194633 Array[a, 40] (* _Jean-François Alcover_, Jul 21 2018, after _Alois P. Heinz_ *)
%o A194633 (PARI) /* see A002572, set t=10 */
%Y A194633 Cf. A002572, A176485, A176503, A194628 - A194632, A294775.
%K A194633 nonn
%O A194633 1,4
%A A194633 _Jonathan Vos Post_, Aug 30 2011
%E A194633 Added terms beyond a(20)=130688, _Joerg Arndt_, Dec 18 2012
%E A194633 Invalid empirical g.f. removed by _Alois P. Heinz_, Nov 08 2017