cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194684 Number of k in [1,n] for which + > 1, where < > = fractional part, and r=(1+sqrt(3))/2.

This page as a plain text file.
%I A194684 #5 Mar 30 2012 18:57:43
%S A194684 0,2,2,2,5,3,7,1,7,8,11,3,11,12,12,0,15,6,16,19,7,5,21,12,23,0,15,15,
%T A194684 7,15,21,10,23,8,0,24,26,19,10,0,28,29,21,39,0,43,47,24,46,39,11,3,37,
%U A194684 40,3,49,26,51,41,3,52,23,16,57,4,3,43,45,27,13,26,68,50,49,37
%N A194684 Number of k in [1,n] for which <r^n>+<r^k> > 1, where < > = fractional part, and r=(1+sqrt(3))/2.
%t A194684 r = 1/2 + Sqrt[3]/2; z = 15;
%t A194684 p[x_] := FractionalPart[x]; f[x_] := Floor[x];
%t A194684 w[n_, k_] := p[r^n] + p[r^k] - p[r^n + r^k]
%t A194684 Flatten[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
%t A194684     (* A194683 *)
%t A194684 TableForm[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
%t A194684 s[n_] := Sum[w[n, k], {k, 1, n}]
%t A194684 Table[s[n], {n, 1, 100}]   (* A194684 *)
%t A194684 h[n_, k_] := f[p[n*r] + p[k*r]]
%t A194684 Flatten[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
%t A194684    (* A194685 *)
%t A194684 TableForm[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
%t A194684 t[n_] := Sum[h[n, k], {k, 1, n}]
%t A194684 Table[t[n], {n, 1, 100}]    (* A194686 *)
%Y A194684 Cf. A194683.
%K A194684 nonn
%O A194684 1,2
%A A194684 _Clark Kimberling_, Sep 01 2011