A194699 a(n) = floor((p - 1)/12) - floor((p^2 - 1)/(24*p)), where p = prime(n).
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16
Offset: 1
Keywords
Examples
For primes 5, 7, 11 the Hausdorff dimension = 0, so a(3)..a(5) = 0. For primes 13, 17, 19, 23, 29, 31 the Hausdorff dimension = 1, so a(6)..a(11) = 1.
Links
- S. Ahlgren and K. Ono, Addition and counting: the arithmetic of partitions
- A. Folsom, Z. A. Kent and K. Ono, l-adic properties of the partition function, preprint.
- A. Folsom, Z. A. Kent and K. Ono, l-adic properties of the partition function, Advances in Mathematics, 229 (2012), pages 1586-1609.
- Ken Ono (with Jan Bruinier, Amanda Folsom and Zach Kent), Emory University, Adding and counting
- Wikipedia, Ramanujan's congruences
Formula
a(n) ~ 0.125 n log n. [Charles R Greathouse IV, Jan 25 2012]
Comments