cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194723 Number of ternary words either empty or beginning with the first character of the alphabet, that can be built by inserting n doublets into the initially empty word.

This page as a plain text file.
%I A194723 #45 Sep 08 2022 08:45:58
%S A194723 1,1,5,29,181,1181,7941,54573,381333,2699837,19319845,139480397,
%T A194723 1014536117,7426790749,54669443141,404388938349,3004139083221,
%U A194723 22402851226749,167640057210981,1258340276153229,9471952718661621,71481616200910749,540715584181142661
%N A194723 Number of ternary words either empty or beginning with the first character of the alphabet, that can be built by inserting n doublets into the initially empty word.
%H A194723 Alois P. Heinz, <a href="/A194723/b194723.txt">Table of n, a(n) for n = 0..1000</a>
%H A194723 C. Kassel and C. Reutenauer, <a href="https://arxiv.org/abs/1303.3481">Algebraicity of the zeta function associated to a matrix over a free group algebra</a>, arXiv preprint arXiv:1303.3481 [math.CO], 2013-2014.
%F A194723 G.f.: 2/3 + 4/(3*(1+3*sqrt(1-8*x))).
%F A194723 a(0) = 1, a(n) = 1/n * Sum_{j=0..n-1} C(2*n,j)*(n-j)*2^j for n>0.
%F A194723 D-finite with recurrence: n*a(n) = (17*n-12)*a(n-1) - 36*(2*n-3)*a(n-2). - _Vaclav Kotesovec_, Oct 20 2012
%F A194723 a(n) ~ 2^(3*n+1)/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 20 2012
%F A194723 G.f.:  2-4/( Q(0) + 3), where Q(k) = 1 + 8*x*(4*k+1)/( 4*k+2 - 8*x*(4*k+2)*(4*k+3)/( 8*x*(4*k+3) + 4*(k+1)/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Nov 20 2013
%F A194723 From _Karol A. Penson_, Jul 13 2015: (Start)
%F A194723 Special values of the hypergeometric function 2F1, in Maple notation:
%F A194723 a(n+1) = (16/9)*8^n*GAMMA(n+3/2)*hypergeom([1, n+3/2], [n+3],8/9)/(sqrt(Pi)*(n+2)!), n=0,1,... .
%F A194723 Integral representation as the n-th moment of a positive function W(x) = sqrt((8-x)*x)*(1/(9-x))/(2*Pi) on (0,8): a(n+1) = int(x^n*W(x),x=0..8), n=0,1,... . This representation is unique as W(x) is the solution of the Hausdorff moment problem. (End)
%F A194723 a(n) = 2^(n+1)*binomial(2*n,n)*hypergeom([2,1-n],[n+2],-2)/(n+1) - 3^(2*n-1) for n>=1. - _Peter Luschny_, Apr 07 2018
%e A194723 a(2) = 5: aaaa, aabb, aacc, abba, acca (with ternary alphabet {a,b,c}).
%p A194723 a:= n-> `if`(n=0, 1, add(binomial(2*n, j) *(n-j) *2^j, j=0..n-1)/n):
%p A194723 seq(a(n), n=0..25);
%t A194723 CoefficientList[Series[2/3+4/(3*(1+3*Sqrt[1-8*x])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%t A194723 a[n_] := 2^(n+1) CatalanNumber[n] Hypergeometric2F1[2, 1-n, n+2, -2] - 3^(2n - 1);
%t A194723 Table[If[n == 0, 1, a[n]], {n, 0, 22}] (* _Peter Luschny_, Apr 08 2018 *)
%o A194723 (PARI) a(n) = if (n==0, 1, sum(j=0, n-1, binomial(2*n,j)*(n-j)*2^j)/n); \\ _Michel Marcus_, Apr 07 2018
%o A194723 (PARI) x='x+O('x^99); Vec(4/(3*(1+3*(1-8*x)^(1/2)))+2/3) \\ _Altug Alkan_, Apr 07 2018
%o A194723 (Magma) [1] cat [&+[(Binomial(2*n, k)*(n-k)*2^k)/n: k in [0..n]]: n in [1..25]]; // _Vincenzo Librandi_, Apr 08 2018
%Y A194723 Column k=3 of A183134.
%Y A194723 Cf. A194726.
%K A194723 nonn
%O A194723 0,3
%A A194723 _Alois P. Heinz_, Sep 02 2011