cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194724 Number of quaternary words either empty or beginning with the first character of the alphabet, that can be built by inserting n doublets into the initially empty word.

This page as a plain text file.
%I A194724 #23 Jul 19 2017 20:53:35
%S A194724 1,1,7,58,523,4966,48838,492724,5068915,52955950,560198962,5987822380,
%T A194724 64563867454,701383563388,7668869344108,84326618668648,
%U A194724 931894610845123,10344218506421758,115280448164645818,1289346114476360188,14467472108268263818,162816535672067515828
%N A194724 Number of quaternary words either empty or beginning with the first character of the alphabet, that can be built by inserting n doublets into the initially empty word.
%H A194724 Alois P. Heinz, <a href="/A194724/b194724.txt">Table of n, a(n) for n = 0..500</a>
%H A194724 C. Kassel and C. Reutenauer, <a href="https://arxiv.org/abs/1303.3481">Algebraicity of the zeta function associated to a matrix over a free group algebra</a>, arXiv preprint arXiv:1303.3481, 2013
%F A194724 G.f.: 3/4 + 3/(2*(2+4*sqrt(1-12*x))).
%F A194724 a(0) = 1, a(n) = 1/n * Sum_{j=0..n-1} C(2*n,j)*(n-j)*3^j for n>0.
%F A194724 a(n) ~ 3 * 12^n / (4 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Sep 07 2014
%F A194724 Conjecture: n*a(n) +2*(-14*n+9)*a(n-1) +96*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Mar 14 2015
%e A194724 a(2) = 7: aaaa, aabb, aacc, aadd, abba, acca, adda (with quaternary alphabet {a,b,c,d}).
%p A194724 a:= n-> `if`(n=0, 1, add(binomial(2*n, j) *(n-j) *3^j, j=0..n-1)/n):
%p A194724 seq(a(n), n=0..25);
%p A194724 # second Maple program:
%p A194724 a:= proc(n) option remember; `if`(n<3, [1, 1, 7][n+1],
%p A194724       ((28*n-18)*a(n-1) -(192*n-288)*a(n-2))/n)
%p A194724     end:
%p A194724 seq(a(n), n=0..30);
%t A194724 CoefficientList[Series[3/4+3/(2(2+4Sqrt[1-12x])),{x,0,30}],x] (* _Harvey P. Dale_, Sep 30 2012 *)
%Y A194724 Column k=4 of A183134.
%K A194724 nonn
%O A194724 0,3
%A A194724 _Alois P. Heinz_, Sep 02 2011