cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194767 Denominator of the fourth increasing diagonal of the autosequence of second kind from (-1)^n / (n+1).

This page as a plain text file.
%I A194767 #47 Jun 12 2025 22:35:04
%S A194767 2,2,12,20,10,42,56,24,90,110,44,156,182,70,240,272,102,342,380,140,
%T A194767 462,506,184,600,650,234,756,812,290,930,992,352,1122,1190,420,1332,
%U A194767 1406,494,1560,1640,574,1806,1892,660,2070,2162,752,2352,2450,850,2652,2756,954,2970,3080,1064,3306,3422,1180,3660
%N A194767 Denominator of the fourth increasing diagonal of the autosequence of second kind from (-1)^n / (n+1).
%C A194767 The autosequence of first kind from (-1)^n/(n+1) is A189733.
%C A194767 For the second kind (the second increasing diagonal is (-1)^n/(n+1), half of the main one):
%C A194767       2,     1,     0,  -1/2,  -1/3,   1/6,   1/2,  5/12,
%C A194767      -1,    -1,  -1/2,   1/6,   1/2,   1/3, -1/12, -7/20,
%C A194767       0,   1/2,   2/3,   1/3,  -1/6, -5/12, -4/15,  1/12,
%C A194767     1/2,   1/6,  -1/3,  -1/2,  -1/4,  3/20,  7/20, 13/60,
%C A194767    -1/3,  -1/2,  -1/6,   1/4,   2/5,   1/5, -2/15, -3/10,
%C A194767    -1/6,   1/3,  5/12,  3/20,  -1/5,  -1/3,  -1/6,  5/42,
%C A194767     1/2,  1/12, -4/15, -7/20, -2/15,   1/6,   2/7,   1/7,
%C A194767   -5/12, -7/20, -1/12, 13/60,  3/10,  5/42,  -1/7,  -1/4.
%C A194767 Main diagonal: (period 2:repeat 2, -1)/A026741(n+1).
%C A194767 Second (increasing) diagonal: (-1)^n / (n+1).
%C A194767 Third (increasing) diagonal: (-1)^(n+1)*A026741(n) / A045896(n).
%C A194767 Fourth (increasing) diagonal: (-1)^(n+1)*A146535(n)/ a(n).
%H A194767 OEIS Wiki, <a href="https://oeis.org/wiki/Autosequence">Autosequence</a>.
%H A194767 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,-3,0,0,1).
%F A194767 a(3*n) = (3*n+1)*(3*n+2), a(3*n+1) = (n+1)*(3*n+2), a(3*n+2) = 3*(n+1)*(3*n+4).
%F A194767 G.f.: 2*(1+x+6*x^2+7*x^3+2*x^4+3*x^5+x^6)/(1-x^3)^3. - _Jean-François Alcover_, Nov 11 2016
%F A194767 a(n+2) = 2 * A306368(n) for n >= 0. - _Joerg Arndt_, Aug 25 2023
%F A194767 a(n) = (n+1) * A051176(n+2) for n >= 0. - _Paul Curtz_, Sep 13 2023
%F A194767 Sum_{n>=0} 1/a(n) = 1 + log(3) - Pi/(3*sqrt(3)). - _Amiram Eldar_, Sep 17 2023
%t A194767 c = Table[1/9 (7 n + 7 n^2 + 2 n Cos[2 n *Pi/3] + 2 n^2 Cos[2 n *Pi/3] + 2 Sqrt[3] n Sin[2 n *Pi/3] + 2 Sqrt[3] n^2 Sin[2 n *Pi/3]), {n, 1, 50}] (* _Roger Bagula_, Mar 25 2012 *)
%t A194767 a[n_] := (n+1) * Numerator[(n+2)/3]; Array[a, 60, 0] (* _Amiram Eldar_, Sep 17 2023 *)
%t A194767 LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{2,2,12,20,10,42,56,24,90},60] (* _Harvey P. Dale_, May 15 2025 *)
%Y A194767 Cf. A001504 = 2*A060544, A049450 = 2*A000326, A045945 = 6*A005449.
%Y A194767 Cf. A026741, A045896, A051176, A146535, A189733, A306368.
%K A194767 nonn,frac,easy
%O A194767 0,1
%A A194767 _Paul Curtz_, Sep 02 2011