This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194770 #15 Jan 30 2020 21:29:16 %S A194770 1,-1,0,6,-24,0,720,-5040,0,362880,-3628800,0,479001600,-6227020800,0, %T A194770 1307674368000,-20922789888000,0,6402373705728000,-121645100408832000, %U A194770 0,51090942171709440000,-1124000727777607680000 %N A194770 E.g.f. 2*sqrt(3)/3*arctan(sqrt(3)*x/(x+2)). %F A194770 a(3*n+1) = (3*n)!, a(3*n+2) = -(3*n+1)!, a(3*n) = 0. %F A194770 E.g.f.: A(x) = 2*sqrt(3)/3*arctan(sqrt(3)*x/(x+2)) = x-x^2/2!+6*x^4/4!-24*x^5/5!+720*x^7/7!-.... %F A194770 The derivative A'(x) = 1/(1+x+x^2). The inverse function A^-1(x) = 2/sqrt(3)*tan(sqrt(3)/2*x)/(1-1/sqrt(3)*tan(sqrt(3)/2*x)) is the generating function for A080635 (apart from the initial term). %F A194770 D-finite with recurrence: a(n) +(n-1)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - _R. J. Mathar_, Jan 25 2020 %t A194770 With[{nn=30},Rest[CoefficientList[Series[2 Sqrt[3]/3 ArcTan[Sqrt[ 3] x/(x+2)],{x,0,nn}],x] Range[0,nn-1]!]] (* _Harvey P. Dale_, May 13 2019 *) %Y A194770 A080635 %K A194770 sign,easy %O A194770 1,4 %A A194770 _Peter Bala_, Sep 02 2011