cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A194556 Decimal expansion of (9/4)^(27/8) = (27/8)^(9/4).

Original entry on oeis.org

1, 5, 4, 3, 8, 8, 8, 7, 3, 5, 8, 5, 5, 2, 5, 8, 3, 1, 8, 3, 6, 0, 4, 4, 6, 0, 0, 1, 3, 0, 7, 4, 9, 0, 9, 7, 1, 8, 8, 7, 1, 4, 9, 4, 2, 7, 9, 6, 8, 0, 2, 7, 2, 4, 1, 2, 8, 5, 4, 3, 3, 0, 4, 5, 3, 2, 9, 4, 4, 1, 8, 3, 6, 3, 0, 2, 2, 0, 7, 2, 0, 7, 9, 6, 9, 2, 3, 7, 0, 7, 3, 2, 6, 2, 5, 7, 6, 1, 0, 7
Offset: 2

Views

Author

Jonathan Sondow, Aug 30 2011

Keywords

Comments

Positive real numbers x < y with x^y = y^x are parameterized by (x,y) = ((1 + 1/t)^t,(1 + 1/t)^(t+1)) for t > 0. For example, t = 2 gives (x,y) = (9/4,27/8). See Sondow and Marques 2010, pp. 155-157.
(9/4)^(27/8) = (27/8)^(9/4) corresponds to (4/9)^(4/9) = (8/27)^(8/27) (see A194789) under the equivalence x^y = y^x <==> (1/x)^(1/x) = (1/y)^(1/y).

Examples

			15.438887358552583183604460013074909718871494279680272412854330453294418363...
		

Crossrefs

Cf. A073226 (e^e), A194557 (sqrt(3)^sqrt(27) = sqrt(27)^sqrt(3)), A194789 ((4/9)^(4/9) = (8/27)^(8/27)).

Programs

  • Mathematica
    RealDigits[ (9/4)^(27/8), 10, 100] // First

Formula

-((9*ProductLog(-1, -(4/9)*log(9/4)))/(4*log(9/4))), where ProductLog is the Lambert W function, simplifies to 27/8. - Jean-François Alcover, Jun 01 2015

A258503 Decimal expansion of (64/27)^(256/81) = (256/81)^(64/27).

Original entry on oeis.org

1, 5, 2, 9, 6, 9, 3, 1, 3, 4, 3, 6, 1, 7, 8, 6, 8, 2, 3, 0, 0, 3, 1, 3, 0, 8, 0, 4, 6, 6, 4, 5, 4, 9, 5, 1, 3, 1, 3, 3, 5, 7, 7, 2, 2, 0, 0, 2, 5, 1, 7, 3, 1, 2, 5, 1, 4, 5, 7, 6, 8, 7, 1, 0, 4, 2, 1, 9, 8, 5, 6, 0, 1, 8, 8, 2, 1, 5, 7, 9, 6, 3, 0, 0, 9, 6, 4, 8, 1, 0, 8, 9, 5, 2, 9, 1, 4, 3, 8, 8, 5, 8, 6
Offset: 2

Views

Author

Jean-François Alcover, Jun 01 2015

Keywords

Examples

			15.2969313436178682300313080466454951313357722002517312514576871...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(64/27)^(256/81), 10, 103] // First

Formula

-((x*ProductLog(-1, -(log(x)/x)))/log(x)), replacing x with 64/27, gives 256/81 (ProductLog is the Lambert W function).

A258504 Decimal expansion of (27/64)^(27/64) = (81/256)^(81/256).

Original entry on oeis.org

6, 9, 4, 8, 2, 3, 3, 6, 0, 7, 2, 7, 9, 1, 6, 7, 9, 5, 5, 0, 0, 9, 3, 9, 1, 7, 0, 8, 9, 8, 3, 1, 4, 5, 4, 7, 1, 5, 6, 5, 9, 1, 4, 2, 0, 6, 8, 1, 5, 5, 3, 9, 9, 4, 0, 2, 6, 0, 4, 0, 5, 5, 4, 4, 0, 9, 7, 2, 1, 3, 2, 5, 9, 9, 4, 5, 4, 1, 5, 3, 9, 4, 1, 7, 0, 5, 2, 5, 0, 7, 0, 2, 8, 6, 2, 0, 0, 0, 7, 4, 5, 1, 9, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 01 2015

Keywords

Examples

			0.6948233607279167955009391708983145471565914206815539940260405544...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(27/64)^(27/64), 10, 105] // First

Formula

x^x = y^y <==> (1/x)^(1/y) = (1/y)^(1/x), hence, from A258503:
(64/27)^(256/81) = (256/81)^(64/27) <==> (27/64)^(27/64) = (81/256)^(81/256).
Showing 1-3 of 3 results.