cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194796 Imbalance of the number of parts of all partitions of n.

This page as a plain text file.
%I A194796 #21 Nov 11 2015 11:20:28
%S A194796 0,-1,0,-3,0,-8,0,-17,3,-31,10,-58,22,-101,52,-167,104,-278,191,-451,
%T A194796 344,-711,594,-1119,983,-1730,1606,-2635,2555,-3990,3978,-5972,6118,
%U A194796 -8835,9269,-12986,13835,-18917,20454,-27320,29900,-39204,43268,-55846,62112
%N A194796 Imbalance of the number of parts of all partitions of n.
%C A194796 Consider the three-dimensional structure of the shell model of partitions, version "tree" (see the illustration in A194795). Note that only the parts > 1 produce the imbalance. The 1's are located in the central columns therefore they do not produce the imbalance. For more information see A135010.
%H A194796 Alois P. Heinz, <a href="/A194796/b194796.txt">Table of n, a(n) for n = 1..1000</a>
%F A194796 a(n) = Sum_{k=1..n} (-1)^(k-1)*A138135(k).
%p A194796 b:= proc(n, i) option remember; local f, g;
%p A194796       if n=0 or i=1 then [1, 0]
%p A194796     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
%p A194796          [f[1]+g[1], f[2]+g[2]+g[1]]
%p A194796       fi
%p A194796     end:
%p A194796 a:= proc(n) option remember;
%p A194796       (-1)^n*(b(n-1, n-1)[2]-b(n, n)[2])+`if`(n=1, 0, a(n-1))
%p A194796     end:
%p A194796 seq(a(n), n=1..60);  # _Alois P. Heinz_, Apr 04 2012
%t A194796 b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]]; a[n_] := a[n] = (-1)^n*(b[n-1, n-1][[2]] - b[n, n][[2]]) + If[n == 1, 0, a[n-1]]; Table [a[n], {n, 1, 60}] (* _Jean-François Alcover_, Nov 11 2015, after _Alois P. Heinz_ *)
%o A194796 (PARI) vector(50, n, sum(k=1, n, (-1)^(k-1)*(numdiv(k)-1+sum(j=1, k-1, (numdiv(j)-1)*(numbpart(k-j)-numbpart(k-j-1)))))) \\ _Altug Alkan_, Nov 11 2015
%Y A194796 Cf. A006128, A096541, A135010, A138121, A138135, A138137, A197595, A194797, A194809.
%K A194796 sign
%O A194796 1,4
%A A194796 _Omar E. Pol_, Feb 01 2012
%E A194796 More terms from _Alois P. Heinz_, Apr 04 2012