cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194805 Number of parts that are visible in one of the three views of the section model of partitions version "tree" with n sections.

This page as a plain text file.
%I A194805 #37 May 12 2020 22:54:22
%S A194805 0,1,2,4,7,11,17,25,36,51,71,97,132,177,235,310,406,527,681,874,1116,
%T A194805 1418,1793,2256,2829,3532,4393,5445,6727,8282,10168,12445,15190,18491,
%U A194805 22452,27192,32859,39613,47651,57199,68522,81920,97756,116434,138435
%N A194805 Number of parts that are visible in one of the three views of the section model of partitions version "tree" with n sections.
%C A194805 The mentioned view of the section model looks like a tree (see example). Note that every column contains the same parts. For more information about the section model of partitions see A135010 and A194803.
%C A194805 Number of partitions of 2n-1 such that n-1 or n is a part, for n >=1. - _Clark Kimberling_, Mar 01 2014
%H A194805 Robert Price, <a href="/A194805/b194805.txt">Table of n, a(n) for n = 0..5000</a>
%F A194805 a(n) = A084376(n) - 1.
%F A194805 a(n) = A000041(n) + A000041(n-1) - 1, if n >= 1.
%F A194805 a(n) = A000041(n) + A000065(n-1), if n >= 1.
%e A194805 Illustration of one of the three views with seven sections:
%e A194805 .
%e A194805 .                   1
%e A194805 .                 2 1
%e A194805 .                   1 3
%e A194805 .                 2 1
%e A194805 .               4   1
%e A194805 .                   1 3
%e A194805 .                   1   5
%e A194805 .                 2 1
%e A194805 .               4   1
%e A194805 .             3     1
%e A194805 .           6       1
%e A194805 .                     3
%e A194805 .                       5
%e A194805 .                         4
%e A194805 .                           7
%e A194805 .
%e A194805 There are 25 parts that are visible, so a(7) = 25.
%e A194805 Using the formula we have a(7) = p(7) + p(7-1) - 1 = 15 + 11 - 1 = 25, where p(n) is the number of partitions of n.
%t A194805 Table[Count[IntegerPartitions[2 n - 1],  p_ /; Or[MemberQ[p, n - 1], MemberQ[p, n]]], {n, 50}]  (* _Clark Kimberling_, Mar 01 2014 *)
%t A194805 Table[PartitionsP[n] + PartitionsP[n-1] - 1, {n, 0, 44}] (* _Robert Price_, May 12 2020 *)
%Y A194805 Cf. A000041, A000065, A084376, A135010, A138121, A141285, A194550, A194803, A194804.
%K A194805 nonn
%O A194805 0,3
%A A194805 _Omar E. Pol_, Jan 27 2012